giải hpt\(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
\(\hept{\begin{cases}2x^2+xy-6x-2y+4=0\\2y^2-xy-x+3y+1=0\end{cases}}\)
giải hpt nhé
Gọi pt trên là pt (1), pt dưới là pt (2).
\(pt\left(1\right)\Leftrightarrow2x^2+\left(y-6\right)x-2y+4.\)
Ta có: \(\Delta=\left(y-6\right)^2-4\cdot2\left(4-2y\right)=y^2-12y+36-32+16y=y^2+4y+4=\left(y+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6-y+y+2}{4}=2\\x=\frac{6-y-y-2}{4}=\frac{2-y}{2}\end{cases}}\)
Với từng trường hợp thay vào pt (2) sẽ ra, tự lm nhé
giải hpt
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\\x^2+5x+y=16\end{cases}}\)
b)\(\hept{\begin{cases}2x-2y-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)
từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được:
\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)
nhân ra giải phương trình rồi tìm x, tự lm nhé.
b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
E MỚI HOK HỆ NÊN CHƯA GIẢI ĐC
A CHI NÀO GIỎI GIẢI KĨ GIÚP E
E SẼ TICK CHO
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
A CHỊ NÀO GIỎI GIẢI KĨ GIÚP E VỚI
MAI E ĐI HOK RỒI
EM SẼ TIXKS CHO
giải hpt:
\(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}}\)
\(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
Bài Trang hướng làm thì đúng nhưng bài làm thì sai. Mình chỉnh lại nhé.
Dễ thấy \(x=0\) không phải nghiệm của phương trình. Chia 2 vế của cả 2 hệ cho \(x^2\)ta được
\(\hept{\begin{cases}\frac{y}{x^2}+\frac{y^2}{x}=6\\\frac{1}{x^2}+y^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{y}{x}\left(\frac{1}{x}+y\right)=6\\\left(\frac{1}{x^2}+\frac{2y}{x}+y^2\right)-\frac{2y}{x}=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{y}{x}\left(\frac{1}{x}+y\right)=6\\\left(\frac{1}{x}+y\right)^2-\frac{2y}{x}=5\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{y}{x}=a\\\frac{1}{x}+y=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}ab=6\\b^2-2a=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{b^2-5}{2}.b=6\\a=\frac{b^2-5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b^3-5b-12=0\\a=\frac{b^2-5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{y}{x}=2\\\frac{1}{x}+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x\\\frac{1}{x}+2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x\\2x^2-3x+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}or\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}}\)
nhận thấy x=0 k là nghiệm của phương trình chia hệ phương trình cho x^2 ta được:
(y/x^2)+(y^2/x)=6
và (1/x^2)+y^2=5
<=>(y/x)(1/x +y)=6
(1/x +y)^2 -2(y/x)-5=0
đặt u=(1/x +y) ; v=y/x khi đó ta có:
uv=6
và u^2 -2v-5=0
<=>u=6/v
và u^2- 12/u -5=0 (1)
(1)<=> u^3 -5u-12 =0
<=>u=3 =>v=2
với u=3 v=2 ta có:
(1/x +y)=3
và y/x =2
<=>2x^2 -3x+1 =0
và y=2x
<=>x=1: y=1/2 hoặc x=1/2; y=1
Làm bài tốt na! Nhớ mk đó!!
y^2+x+xy−6y+1=0
y^3x−8y^2+x^2y+x=0
hpt
⇔{(y2+x)+(xy+1)=6y(x+y2)(xy+1)=9y2⇔{(y2+x)+(xy+1)=6y(x+y2)(xy+1)=9y2
Đặt a=x+y2;b=xy+1a=x+y2;b=xy+1 hpt trở thành: {a+b=6yab=9y2{a+b=6yab=9y2
⇒⇒ a, b là nghiệm của pt : t2−6yt+9y2=0t2−6yt+9y2=0
⇔t=3y⇔a=b=3y⇔{y2+x=3yxy+1=3y⇔{x=3y−y2y(3−y2)+1=3y⇔{x=3y−y2y=1⇔{x=2y=1⇔t=3y⇔a=b=3y⇔{y2+x=3yxy+1=3y⇔{x=3y−y2y(3−y2)+1=3y⇔{x=3y−y2y=1⇔{x=2y=1
Gõ nhầm đừng kêu ^v^
giải hệ phương trình
a. \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
b,\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
c,\(\hept{\begin{cases}4\left(x^2+y^2\right)+4xy+\frac{3}{\left(x+y\right)^2}=7\\\end{cases}}\)
giải hpt:\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\)
\(x^2y+xy^2=30\Leftrightarrow\left(xy\right)^2-11xy+30=0\)
\(\orbr{\Leftrightarrow\begin{cases}xy=5\\xy=6\end{cases}}\)
Với xy=5 \(\Rightarrow x+y=6\). Suy ra x,y là hai nghiệm của phương trình : \(a^2-6a+5=0\Leftrightarrow\orbr{\begin{cases}a=1\\a=5\end{cases}}\)
Với xy=6 \(\Rightarrow x+y=5\). Suy ra x,y là hai nghiệm của phương trình: \(a^2-5a+6=0\Leftrightarrow\orbr{\begin{cases}a=2\\a=3\end{cases}}\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(2;3\right);\left(3;2\right);\left(1;5\right);\left(5;1\right)\)
giải HPT \(\hept{\begin{cases}2x+2y-xy=4\\x^2+y^2+xy=19\end{cases}}\)