Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
To Kill A Mockingbird
Xem chi tiết
Pham Thuy Linh
Xem chi tiết
vy vo
Xem chi tiết
Hưng
Xem chi tiết
Pham Trung Kien
11 tháng 1 2015 lúc 9:14

Bai 1: Ap dung BDT Bunhiacopxki ta co:

         \(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)

         \(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)

         \(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)

         \(= (a+b+c)(x+y+z)\) 

   =>  \(Q.E.D\)

Pham Trung Kien
11 tháng 1 2015 lúc 15:29

Tiep bai 4:Ta co:

               BDT <=>  \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)

    Sau khi khai trien con:   \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)

               Ap dung BDT Cosi ta co:

                                       \(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)

              Lam tuong tu ta co:  \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)

                                        \(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)

              Lam tuong tu ta co:  \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)

Cong (1) voi (2) ta co:      VT\(≥ 3(xy+yz+zx)\)(*)

               Voi cach lam tuong tu ta cung duoc:  VT\(≥ 3(x+y+z) \)(**)

Tu (*) va (**) suy ra :   \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)

                           <=>   VT \(≥ 2(x+y+z)+xy+yz+zx\)

                            =>   \(Q.E.D\)

Ngô Tấn Đạt
2 tháng 1 2016 lúc 21:34

Tick cho mình tròn 40 với bạn hiền

Nấm Chanel
Xem chi tiết
nguyenanhcaoson
Xem chi tiết
Nấm Chanel
Xem chi tiết
Phan Cả Phát
17 tháng 10 2017 lúc 22:09

Casio hả bạn

dia fic
Xem chi tiết
Thảo
12 tháng 12 2020 lúc 20:53

yugyuf

Luong Ngoc Quynh Nhu
Xem chi tiết
Luong Ngoc Quynh Nhu
13 tháng 7 2015 lúc 10:26

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém