cho A= \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\) chứng minh A>50
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
Cho A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) Chứng minh A<2
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
a<2 ai k cho mik, mik se k lại hứa thế lun nói là làm
ta có:1/1^2=1/1
1/2^2=1/2*2<1/1*2=1/1-1/2
1/3^2=1/3*3<1/2*3=1/2-1/3
1/4^2=1/4*4<1/3*4
...
1/50^2=1/50*50<1/49*50=1/49-1/50
=>A=1/1-1/50+1
A=99/50<100/50=2
=>A<2
vậy A<2
CHO \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}.\)CHỨNG MINH A<2
\(\frac{1}{2^2}< \frac{1}{1.2}\)
...................\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(\Rightarrow A< 1-\frac{1}{50}< \frac{49}{50}< 1< 2\)
1/2^2<1/1*2;1/3^2<1/2*3;1/4^2<1/3*4;1/50^2<1/49*50
ta có:
=> 1/1^2+1/2*3+1/3*4+...+1/49*50
<=> 1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
<=> 1-1/50 < 2
=> A < 2
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
=\(1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(< 1+1-\frac{1}{50}=\frac{99}{50}< 2\)
=> \(A< 2\)
chứng minh rằng \(50< ,1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}< 100\)
cho A=1+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+.......+\(\frac{1}{2^{100}-1}\)
Chứng minh rằng a, A<100
b, A>50
Cho :
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)
Chứng minh A < 2
\(A=\frac{1}{1^1}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)
Khi đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}=B\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{49}-\frac{1}{50}< 1\)
Vì \(A< 1+B\)mà \(B< 1\)nên \(B+1< 2\)do đó \(A< 2\)
Vậy \(A< 2\)
1/12+1/22+....+1/502<1/1+1/1x2+1/2x3+....+1/49x50=1-1/50=49/50<2
=>A<2(đpcm)
Ta co
1/2^2<1/1-1/2
1/3^2<1/2-1/3
1/4^2<1/3-1/4
...
1/50^2<1/49-1/50
=>1/1^2+...+1/50^2<1/1-1/2+1/2-1/3+...+1/49-1/50=1/1-1/50=49/50
Ma 49/50<2
=> 1/1^2+1/2^2+...+1/50^2<2
Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Chứng minh A<2
\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)
chứng minh A<2
cho A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};....;\frac{1}{50^2}<\frac{1}{49.50}\)
=>\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{49.50}\)
=>\(A<1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)
=>\(A<2-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)
=>A<2 (đpcm)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(A=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)=1+B\)( B là biểu thức trong ngoặc )
Xét B
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(B<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{49.50}\)
\(B<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(B<\frac{1}{1}-\frac{1}{50}\)
\(B<\frac{49}{50}<1\)
Vậy B < 1
\(\Rightarrow A=1+B<1+1=2\)
\(\Rightarrow A<2\)
cho A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Chứng minh A < 2
Ta có: 1/2^2 < 1/1.2
1/3^2 < 1/2.3
1/4^2 < 3.4
............
1/50^2 < 1/49.50
=> A= 1 + 1/2^2 + 1/3^2 + ....+1/50^2 < 1 + 1/1.2 + 1/2.3 +....+1/49.50 = 1+ 1-1/2+ 1/2 - 1/3 +. ... + 1/49 -1/50 = 1 + 1 - 1/50 = 2-1/50 < 2
Vậy A < 2 (ĐPCM)