Với mọi x, y, z >= 0 . Chứng minh rằng
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Với mọi x, y, z >= 0 . Chứng minh rằng
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)
\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Với mọi x, y, z >= 0 . Chứng minh rằng
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)
\(\Leftrightarrow x+y+z+\dfrac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\dfrac{9}{x+y+z}\ge2\sqrt{\dfrac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\) ( đpcm )
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=1\)
Cho: x,y,z ≥ 0. Chứng minh:
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Áp dụng bđt Mincopxki:
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(1+1+1\right)^2}=\sqrt{\left(x+y+z\right)^2+9}\)
\(AM-GM:\left(x+y+z\right)^2+9\ge2\sqrt{9\left(x+y+z\right)^2}=6\left(x+y+z\right)\)
\(\Leftrightarrow\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Cách dùng C-S:
\(VT=\sum\limits_{cyc} \sqrt{x^2+1}=\sqrt{x^2 +y^2 +z^2 +3 +2\sum\limits_{cyc} \sqrt{(x^2+1)(y^2+1)}}\)
\(\geq \sqrt{x^2 +y^2 +z^2 +3 +2\sum\limits_{cyc} (xy+1)}\)\(=\sqrt{\left(x+y+z-3\right)^2+6\left(x+y+z\right)}\ge\sqrt{6\left(x+y+z\right)}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Cái câu này làm gì thuộc chủ đề HTL trong tam giác vuông :)
P/s: Bị dành mất slot v:
Với x;y;z> 0 thoả mãn hệ thức \(x+y+z=18\sqrt{2}\)
Chứng minh rằng : \(\frac{1}{\sqrt{x\left(y+z\right)}}+\frac{1}{\sqrt{y\left(z+x\right)}}+\frac{1}{\sqrt{z\left(x+y\right)}}\ge\frac{1}{4}\)
Côsi: \(\sqrt{x\left(y+z\right)}=\frac{1}{2\sqrt{2}}.2.\sqrt{2x}.\sqrt{y+z}\le\frac{1}{2\sqrt{2}}\left(2x+y+z\right)\)
\(\Rightarrow\frac{1}{\sqrt{x\left(y+z\right)}}\ge\frac{2\sqrt{2}}{2x+y+z}\)
Tương tự các cái kia.
\(\Rightarrow VT\ge2\sqrt{2}\left(\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\right)\)
\(\ge2\sqrt{2}.\frac{9}{2x+y+z+2y+z+x+2z+x+y}=\frac{18\sqrt{2}}{4\left(x+y+z\right)}=\frac{1}{4}\)
\(\sum\frac{1}{\sqrt{x\left(y+z\right)}}=\sum\frac{\sqrt{2}}{\sqrt{2x}.\sqrt{y+z}}\ge\sum\frac{2\sqrt{2}}{2x+y+z}\ge2\sqrt{2}.\frac{9}{\sum\left(2x+y+z\right)}=\frac{18\sqrt{2}}{4\left(x+y+z\right)}=\frac{1}{4}\)
Với mọi a, b, c, x, y, z \(\in\) R, chứng minh : \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)
Ta sẽ chứng minh:
\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, bình phương 2 vế, BĐT tương đương:
\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)
\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)
\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)
\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)
\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)
ta có bđt cần chứng minh
\(\frac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\Leftrightarrow\sqrt{xy+z}+\sqrt{2\left(x^2+y^2\right)}\ge1+\sqrt{xy}\)
Áp dụng bđt bu nhi ta có
\(\sqrt{2\left(x^2+y^2\right)}\ge x+y\) (1)
mà x+y+z=1\(\Rightarrow xy+z=xy+z\left(x+y+z\right)=\left(z+x\right)\left(z+y\right)\)
áp dụng bu nhi a ta có \(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\) (2)
từ (1) và (2) => \(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\ge x+y+z+\sqrt{xy}=1+\sqrt{xy}\)
Chứng minh rằng với mọi x, y, z > 0 ta có: \(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\ge2+\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Ta có:
\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{y}{z}+\dfrac{x}{z}+\dfrac{z}{x}\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Ta có:
\(\dfrac{x}{y}+\dfrac{x}{y}+1\ge3\sqrt[3]{\dfrac{x^2}{y^2}}\)
Tương tự ...
Cộng lại ta có:
\(2\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\ge3\left(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\right)\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\)
Do đó ta chỉ cần chứng minh:
\(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
\(\Leftrightarrow\left(\sqrt[3]{\dfrac{x}{y}}-\sqrt[3]{\dfrac{x}{z}}\right)^2+\left(\sqrt[3]{\dfrac{y}{x}}-\sqrt[3]{\dfrac{y}{z}}\right)^2+\left(\sqrt[3]{\dfrac{z}{x}}-\sqrt[3]{\dfrac{z}{y}}\right)^2\ge0\) (luôn đúng)
Bài 1 cho x,y,z>2014 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{1007}\)
chứng minh rằng \(\sqrt{x+y+z}\ge\sqrt{x-2014}+\sqrt{y-2014}+\sqrt{z-2014}\)
Bài 2
cho a,b,c>0. chứng minh rằng
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{4}{ab+bc+ca}\)
Bài 2 : đã cm bên kia
Bài 1: :|
we had điều này:
\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)
\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)
Xòng! bunyakovsky
P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<