Tam giác ABC đều , đường cao AH . M bất kì thuộc BC ( M khác B ; C ) . Kẻ MP vuông góc với AB , MQ vuông góc với AC ( P thuộc AB , Q thuộc AC ) . Gọi O là trung điểm của AM .
1. Xác định của tứ giác OPHQ
2. Tìm vị trí của M trên BC để PQ nhỏ nhất.
cho tam giác ABC có B>C. vẽ đường cao ah cua tam giác ABC (tức là AH vuông góc với BC và H thuộc BC). lấy điểm M bất kì trên đoạn thẳng AH. so sánh MB và MC
cho tam giác abc có các đường cao ah. m là một điểm bất kì thuộc cạnh bc( m khác b và c). qua m kẻ các đường thẩng song song với ab và ac, chúng cắt các cạnh ac và ab theo thứ tự ở e và d . b) gọi o là giao điểm của am và de. tam giác abc cần có điều kiện gì để o cags đều các điểm a,d,m,h và e
Cho tam giác ABC đều, đường cao AD,H là trực tâm tam giác ABC.M là điểm bất kì thuộc cạnh BC(M khác B,D,C).Gọi E,F theo thứ tự là hình chiếu của M lên AB,AC.Gọi I là trung điểm AM . Xác định điểm M trên BC để EF nhỏ nhất?
Thường thì nhg thằng xấu như ma sẽ tự nhận miink là hotboys
cho tam giác đều ABC,đường cao AH , H là trực tâm của tam giác .M là một điểm bất kì thuộc cạnh BC ,gọi Evà F theo thứ tự là himhf chiếu của M lên AB,AC,gọi I là trung điểm của AM.Chứng minh các đường thẳng MD.ID,È đồng quy.
Cho tam giác ABC đều, đường cao AD,H là trực tâm tam giác ABC.M là điểm bất kì thuộc cạnh BC(M khác B,D,C).Gọi E,F theo thứ tự là hình chiếu của M lên AB,AC.Gọi I là trung điểm AM . Xác định điểm M trên BC để EF nhỏ nhất?
cho tam giác abc vuông tại a đường cao ah. gọi m là 1 điểm bất kì thuộc bc, i và k lần lượt là hình chiếu của m trên ab, ac. CM: tam giác ihk vuông cân
cho tam giác abc vuông tại a đường cao ah. gọi m là 1 điểm bất kì thuộc bc, i và k lần lượt là hình chiếu của m trên ab, ac. CM: tam giác ihk vuông cân
Cho tam giác ABC đều đường cao AH. Một điểm M bất kì thuộc BC. Kẻ ME, MF vuông góc với AB, AC. I là trung điểm của AM.
a) tứ giác EHIF là hình gì
b) G là trọng tâm của tam giác ABC. Chứng minh EF, HI, MG đồng quy
c) Tìm điểm M trên cạnh BC sao cho độ dài È đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó khi cạnh của tam giác ABC đều là bằng a.
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng