1/5^3+1/6^3+...+1/2004^3<1/40
a) 1 - 2 - 3 + 4 +5 - 6 - 7 + ..... + 2001 - 2002 -2003 + 2004
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ..... + 2001 + 2002 - 2003 - 2004
a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)
\(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)
\(=0+0+...+0=0\)
b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right)\cdot501=\left(-2004\right)\)
chung minh : 1/5^3+1/6^3+1/7^3+........+1/2004^3 <1/40
Bài toán tổng quát:
Với mọi n\(\in\)N* ta có: \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{n\left(n^2-1\right)}=\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Áp dụng vào bài toán:
\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2004^3}< \frac{1}{4.5.6}+\frac{1}{5.6.7}+\frac{1}{6.7.8}+...+\frac{1}{2003.2004.2005}\)
mà \(\frac{1}{4.5.6}+\frac{1}{5.6.7}+\frac{1}{6.7.8}+...+\frac{1}{2003.2004.2005}\)
\(=\frac{1}{2}\left(\frac{2}{4.5.6}+\frac{2}{5.6.7}+\frac{2}{6.7.8}...+\frac{2}{2003.2004.2005}\right)\)
\(=\frac{1}{2}\left(\frac{1}{4.5}-\frac{1}{5.6}+\frac{1}{5.6}-\frac{1}{6.7}+\frac{1}{6.7}-\frac{1}{7.8}...+\frac{1}{2003.2004}-\frac{1}{2004.2005}\right)\)
\(=\frac{1}{2}\left(\frac{1}{4.5}-\frac{1}{2003.2004}\right)=\frac{1}{40}-\frac{1}{2.2003.2004}< \frac{1}{40}\)
=>\(\frac{1}{3.4.5}+\frac{1}{4.5.6}+\frac{1}{5.6.7}+...+\frac{1}{2002.2003.2004}< \frac{1}{40}\)
chung minh rang 1/5^3+1/6^3+1/7^3+..........+1/2004^3<1/40
chung minh : 1/5^3+1/6^3+1/7^3+.........+1/2004^3 < 1/40
Chứng minh rằng : 1/65 < 1/5^3 + 1/6^3 + 1/7^3 + ... + 1/2004^3 <1/40
Tính các tổng:
1/ S = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ...+ 2001- 2002 - 2003 + 2004
2/ S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + ...+ 2002 - 2003 - 2004 + 2005 + 2006
S=(1+2-3-4)+(5+6-7-8)+......+(2001+2002-2003-2004)+(2005+2006)
S=(-4)+(-4)+.......+(-4)+(2005+2006)
Dãy S có 2004-1:1+1=2004 số hạng
Dãy S có 2004:4=501 số -4
Do đó S=-4.501=-2004
S=-2004+(2005+2006)
S=-2004+4011
S=2007
1,S=(1-2-3+4)+(5-6-7+8)+.......+(2001-2002-2003+2004)
S=0+0+.........................+0
S=0
2,hình như pan gi sai đề
Bài 1 :
1 . Tính :
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
2 . Biết : 13 + 23 + ... + 103 = 3025
Tính : S = 23 + 43 + 63 + .... + 203
Ta có:
\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\) - \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)
Đơn giản đi hết ta sẽ còn:
\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
2.
Ta có:
Số khoảng cách của các số trong dãy là 23 = 8
=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.
=> 3025 . 8 = 24200
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
Bài 1: Tính nhanh
a) -5/7-(-5/67) + 13/30 + 1/2 + (-11/6) + 17/14 - (-2/5) b) 3/5 : (-1/15 - 1-6) +3/5 : (1/3 + 16/15 c) (3 - 1/4 + 2/3)-(5 - 1/3 - 6/5) - (6 - 7/4 + 3/2) d) 1/3 + 1/3^2 + 1/3^3 +......+ 1/3^2004 + 1/3^2005 Mọi người giúp em với em cảm ơn ạ =))))))))