chứng tỏ 4^101-1 nhỏ hơn 4^101/3
cho A= 1/2*3/4*5/6*...*99/100 và B= 2/3*4/5*5/6*...*100/101
chứng tỏ A bé hơn BTính tích A*BChứng tỏ A bé hơn 1/101.
Ta có:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> 1/2*3/4*5/6*...*99/100 < 2/3*4/5*6/7*...*100/101
=> A < B
2.
\(A\cdot B=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(A\cdot B=\frac{\left[1\cdot3\cdot5\cdot7\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot9\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
3.
Vì A < B => A.A < A.B => A2 < 1/101 < 1/100
Mà A2 < 1/100 <=> A2 < \(\frac{1}{10}^2\)=> A < 1/10
chứng tỏ
a, \(3^{101}\) - 1 ⋮ 2
b, \(5^{101}\) - 1 ⋮ 4
c, \(3^{101}\) + 1 ⋮ 4
a.
\(3\equiv1\left(mod2\right)\\ \Rightarrow3^{101}\equiv1\left(mod2\right)\\ \Rightarrow3^{101}-1\equiv0\left(mod2\right)\\ \Rightarrow3^{101}-1⋮2\)
b.
\(5\equiv1\left(mod4\right)\\ \Rightarrow5^{101}\equiv1\left(mod4\right)\\ \Rightarrow5^{101}-1\equiv0\left(mod4\right)\\ \Rightarrow5^{101}-1⋮4\)
c.
\(3\equiv-1\left(mod4\right)\\ \Rightarrow3^{101}\equiv-1\left(mod4\right)\\ \Rightarrow3^{101}+1\equiv0\left(mod\right)4\\ \Rightarrowđpcm\)
1) chứng minh: A= 75( 42014 + 42013+ ... + 4 +1 )+ 25 chia hết cho 100
2) cho a,b,c>0. chứng tỏ rằng: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
3) Tìm x biết : |x+1/101| + |x+2/101| + |x+3/101|+....+ |x+100/101|=1001x
Chứng tỏ rằng :
(1+1/3+1/5+1/7+......+1/101)-(1/2+1/4+1/6+...+1/100) = 1/52+1/53+1/54+.....+1/100+1/101+1/102
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
\(A = {(1^4+4)(5^4+4)(9^4+4)...(101^4+4) \over (3^4+4)(7^4+4)(11^4+4)...(103^4+4)}\)
Chứng minh rằng A nhỏ hơn\(1\frac{1}{104^4}\)
Ko ghi nhầm mà không xóa được thôi nhỏ hơn 1/1042
Chứng tỏ rằng: 1-1/2+1/3-1/4+...+1/99-1/200=1/101+1/102+...+1/199+1/200
bài này không thể làm được vì hai vế không bằng nhau :D. Tác giả nên xem lại đề bài\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{99}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
Bên trái là tổng xích ma \(\left(-1\right)^{x+1}.\frac{1}{x}\)với x chạy từ 1 đến 99
Bên phải là tổng xích ma \(\frac{1}{x}\)với x chạy từ 101 tới 200
dùng máy tính casio fx bấm 2 tổng thấy 2 kết quả lệch ngay từ số thập phân thứ ba
nếu là thế này thì mới làm được
\(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
ta làm như sau: Biến đổi vế trái ta có
\(VT=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{199}+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}=VP\)
=
chứng tỏ rằng 1-1/2+1/3-1/4+.....+1/99-1/200=1/101+1/102+...+1/199+1/200
Chứng tỏ rằng :1-1/2+1/3+1/4+...+1/99-1/200=1/101+1/102+...+1/199+1/200 .