Câu hỏi : Cho tam giác ABC cân tại A có A=700.Hai tia phân giác góc B và góc C cắt nhau tại I .Tính số đo góc BIC
Cho tam giác ABC cân tại A. Hai tia phân giác của góc B và góc C cắt nhau tại I, biết BIC = 120 độ .Tính số đo góc A.
Câu hỏi : Cho tam giác ABC cân tại A . Hai tia phân giác góc B và Góc C cắt nhau tại I biết BIC = 1200.Tính góc A
Tam giác ABC cân tại A => \(\widehat{B}=\widehat{C}\)
Mà 2 tia phân giác góc B và Góc C cắt nhau tại I
=> Tạo ra tam giác BIC cân tại I (do \(\widehat{B}=\widehat{C}\Leftrightarrow2\widehat{CBI}=2\widehat{BCI}\Rightarrow\widehat{CBI}=\widehat{BCI}\))
Khi đó tam giác BIC có :
\(\widehat{BIC}+2\widehat{BCI}=180^{\text{o}}\Rightarrow\widehat{BCI}=\widehat{CBI}=30^{\text{o}}\Rightarrow\widehat{C}=\widehat{B}=60^{\text{o}}\Rightarrow\widehat{A}=60^{\text{o}}\)(tổng 3 góc tam giác)
Cho tam giác ABC. Các tia phân giác của góc B và góc C cắt nhau tại I. Các tia phân giác của các góc ngoài đỉnh B và C cắt nhau tại K. Tính số đo góc BIC và góc BKC theo số đo góc A của tam giác ABC
Bạn xem ở đường link này:
Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath
Cho tam giác ABC. Các tia phân giác của góc B và góc C cắt nhau tại I. Các tia phân giác của các góc ngoài đỉnh B và C cắt nhau tại K. Tính số đo góc BIC và góc BKC theo số đo góc A của tam giác ABC
Hình vẽ a chèn không rõ được không, chắc giống của e thôi.
https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP
Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)
còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)
Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)
\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)
Cho tam giác ABC vuông tại A. Hai tia phân giác của góc B và C cắt nhau tại I. Tính số đo góc BIC
Ta có:
Góc ABC + góc ACB = 90o
\(\Rightarrow\frac{1}{2}\)góc ABC + \(\frac{1}{2}\)góc ACB = \(\frac{1}{2}.90^o=45^o\)
\(\Rightarrow\)Góc IBC + góc ICB = 45o
Xét \(\Delta BIC\):
Góc IBC + góc ICB + góc BIC = 180o
(Góc IBC + góc ICB) + góc BIC = 180o
45o + góc BIC =180o
Góc BIC = 135o
Ta có: góc A + góc B + góc C = 1800
=> góc B + góc C = 180 - góc A = 180 - 90 = 900
\(\Rightarrow\frac{B_1+B_2}{2}+\frac{C_1+C_2}{2}=90^0\)
\(\Rightarrow\frac{2B_1}{2}+\frac{2C_1}{2}=90^0\Rightarrow B_1+C_1=90^0\)
Hay góc BIC = 900
Vậy góc BIC = 900
À tui nhầm
góc B + góc C = 900
=> B1 + B2 + C1 + C2 = 900
=> 2B1 + 2C1 = 900
=> 2(B1 + C1) = 900
=> B1 + C1 = 450
Có: góc BIC + B1 + C1 = 1800
=> góc BIC = 180 - 45 = 1350
Vậy góc BIC = 1350
Cho tam giác ABC cân tại A. Hai tia phân giác của góc B và góc C cắt nhau tại I,
biết BIC = 120 độ .Tính số đo góc A.
1.Cho tam giác ABC vuông tại A. Vẽ AH vuông góc với BC tại H. Chứng minh rằng góc B= góc HAC, góc C= góc BAH
2. Cho tam giác ABC có góc A=a. Hai tia phân giác của hai góc B,C cắt nhau tại I. Tính số đo góc BIC theo a.
Xét tam giác ABC có:
^A+^B+^C=180°(đl tổng ba góc tam giác)
=>^B+^C=180°-a
Vì BI là pg ^B
=>^ABI=^IBC=1/2^B
Vì CI là pg ^C
=>^BCI=^ICA=1/2^C
Ta có:^B+^C=180°-a
=>(^B+^C)/2=(180°-a)/2
=>^IBC+^BCI=90°-a/2
Xét tam giác BIC có:
^IBC+^BCI+^BIC=180°(đl tổng ba góc tam giác)
=>^BIC=180°-90°-a/2
=>^BIC=90°+a/2
Bạn vẽ hình giúp mình nhé. Mình chỉ giải thôi nha!
1.Vì AH vuông góc với BC
=>^AHC=90°
Xét tam giác HAC vuông tại H
=>^HAC+^C=90°
=>^HAC=90° -^C (1)
Xét tam giác ABC vuông tại A
=>^B+^C=90°
=>^B=90° - ^C (2)
Từ (1) và (2)=>đpcm
-----------------------------------------------------------------
Câu này cm tương tự
Để tối tớ lm câu hai nha bạn. H tớ phải đi học r ạ
Cho tam giác ABC có A= 70 độ , tia phân giác của góc B và góc C cắt nhau tại I .Tính số đo của BIC
Cậu tự vẽ hình !
Theo tổng ba goác trong một tam giác , ta có :
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(70^0+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\widehat{ABC}+\widehat{ACB}=110^0\)
Vì I là là giao điểm ba đường phân giác nên
BI là phân giác của góc ABC
\(\Rightarrow\widehat{ABI}=\widehat{IBC}=\frac{\widehat{ABC}}{2}\)
CI là phân giác của góc ACB
\(\Rightarrow\widehat{ACI}=\widehat{ICB}=\frac{\widehat{ACB}}{2}\)
Ta có :
\(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^0}{2}=50^0\)
Và áp dụng tổng 3 góc trong tam giác lên tam giác BIC thì
=> Góc BIC = 1800 - 500 = 1300
Cho tam giác ABC có Â = 60 độ. Các tia phân giác của góc B và C cắt nhau tại I, lần lượt cắt AC và AB tại D và E. Phân giác góc BIC cắt BC tại F
a) Tính số đo góc BIC
b) Chứng minh: ID=IE=IF
c) Chứng minh: Tam giác EDF là tam giác đều
d) Chứng minh: I là giao điểm của cả hai đường phân giác của hai tam giác ABC và DEF
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF