Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai Anh
Xem chi tiết
Trần Thế Bảo
Xem chi tiết
Xyz OLM
15 tháng 1 2020 lúc 22:51

Tam giác ABC cân tại A => \(\widehat{B}=\widehat{C}\) 

Mà 2 tia phân giác góc B và Góc C cắt nhau tại I 

=> Tạo ra tam giác BIC cân tại I  (do \(\widehat{B}=\widehat{C}\Leftrightarrow2\widehat{CBI}=2\widehat{BCI}\Rightarrow\widehat{CBI}=\widehat{BCI}\))

Khi đó tam giác BIC có :

 \(\widehat{BIC}+2\widehat{BCI}=180^{\text{o}}\Rightarrow\widehat{BCI}=\widehat{CBI}=30^{\text{o}}\Rightarrow\widehat{C}=\widehat{B}=60^{\text{o}}\Rightarrow\widehat{A}=60^{\text{o}}\)(tổng 3 góc tam giác)

Khách vãng lai đã xóa
ngô thị gia linh
Xem chi tiết
admin (a@olm.vn)
15 tháng 11 2017 lúc 15:02

Bạn xem ở đường link này:

Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath

ngô thị gia linh
Xem chi tiết
Nguyễn Minh Quang
6 tháng 11 2020 lúc 12:34

Hình vẽ a chèn không rõ được không, chắc giống của e thôi. 

https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP

Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)

\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)

còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)

\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)

Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)

\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)

Khách vãng lai đã xóa
Huỳnh Diệu Linh
Xem chi tiết
Le Thi Khanh Huyen
11 tháng 7 2016 lúc 21:56

A B C I

Ta có:

Góc ABC + góc ACB = 90o

\(\Rightarrow\frac{1}{2}\)góc ABC + \(\frac{1}{2}\)góc ACB = \(\frac{1}{2}.90^o=45^o\)

\(\Rightarrow\)Góc IBC + góc ICB = 45o

Xét \(\Delta BIC\):

Góc IBC + góc ICB + góc BIC = 180o

(Góc IBC + góc ICB) + góc BIC = 180o

45o + góc BIC =180o

Góc BIC = 135o

Ngọc Vĩ
11 tháng 7 2016 lúc 21:58

A B C 2 2 1 1 I

Ta có: góc A + góc B + góc C = 1800

=> góc B + góc C = 180 - góc A = 180 - 90 = 900

\(\Rightarrow\frac{B_1+B_2}{2}+\frac{C_1+C_2}{2}=90^0\)

\(\Rightarrow\frac{2B_1}{2}+\frac{2C_1}{2}=90^0\Rightarrow B_1+C_1=90^0\)

Hay góc BIC = 900

                                                                        Vậy góc BIC = 900

Ngọc Vĩ
11 tháng 7 2016 lúc 22:02

À tui nhầm

góc B + góc C = 900

=> B1 + B2 + C1 + C2 = 900

=> 2B1 + 2C1 = 900

=> 2(B1 + C1) = 900

=> B1 + C1 = 450

Có: góc BIC + B1 + C1 = 1800

=> góc BIC = 180 - 45 = 1350

                                                                    Vậy góc BIC = 1350

Nguyễn Mai Anh
Xem chi tiết
nguyen phuong thao
Xem chi tiết
Laura
14 tháng 10 2019 lúc 22:41

Xét tam giác ABC có:

^A+^B+^C=180°(đl tổng ba góc tam giác)

=>^B+^C=180°-a

Vì BI là pg ^B

=>^ABI=^IBC=1/2^B

Vì CI là pg ^C

=>^BCI=^ICA=1/2^C

Ta có:^B+^C=180°-a

=>(^B+^C)/2=(180°-a)/2

=>^IBC+^BCI=90°-a/2

 Xét tam giác BIC có:

^IBC+^BCI+^BIC=180°(đl tổng ba góc tam giác)

=>^BIC=180°-90°-a/2

=>^BIC=90°+a/2

Laura
14 tháng 10 2019 lúc 13:36

Bạn vẽ hình giúp mình nhé. Mình chỉ giải thôi nha!

1.Vì AH vuông góc với BC 

=>^AHC=90°

Xét tam giác HAC vuông tại H

=>^HAC+^C=90°

=>^HAC=90° -^C (1)

Xét tam giác ABC vuông tại A

=>^B+^C=90°

=>^B=90° - ^C (2)

Từ (1) và (2)=>đpcm

-----------------------------------------------------------------

Câu này cm tương tự

Laura
14 tháng 10 2019 lúc 13:47

Để tối tớ lm câu hai nha bạn. H tớ phải đi học r ạ

Trần Thị Hải Lý
Xem chi tiết
Kurosaki Akatsu
4 tháng 6 2017 lúc 14:23

Cậu tự vẽ hình !

Theo tổng ba goác trong một tam giác , ta có :

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(70^0+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\widehat{ABC}+\widehat{ACB}=110^0\)

Vì I là là giao điểm ba đường phân giác nên 

BI là phân giác của góc ABC

\(\Rightarrow\widehat{ABI}=\widehat{IBC}=\frac{\widehat{ABC}}{2}\)

CI là phân giác của góc ACB

\(\Rightarrow\widehat{ACI}=\widehat{ICB}=\frac{\widehat{ACB}}{2}\)

Ta có :

\(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^0}{2}=50^0\)

Và áp dụng tổng 3 góc trong tam giác lên tam giác BIC thì 

=> Góc BIC = 1800 - 500 = 1300

Còi Ham Chơi
4 tháng 6 2017 lúc 14:00

hỏi gì chạy ra mà hỏi cô 

Trần Khởi My
4 tháng 6 2017 lúc 14:02

tttttttt

Nguyễn Mai Nhan Ngọc
Xem chi tiết
Nguyễn Đức Anh
8 tháng 6 2016 lúc 10:36

A B C D E F I

a, 

ta có 

A + B+ C = \(180^0\)

B + C  = \(180^0\)-  A

mà BI là phân giác góc B

IBC = \(\frac{1}{2}\)B

CI là phân giác góc C 

ICB = \(\frac{1}{2}\)C

suy ra 

IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)\(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)\(60^0\)

mà IBC + ICB + BIC = \(180^0\)

suy ra BIC = \(180^0\)- ( IBC + ICB )

          BIC = \(180^0\)\(60^0\) 

          BIC = \(120^0\)

b,

ta có vì I là giao điểm của phân giác góc B và C 

suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC 

nên IE = ID = IF

c,

ta có EIB + BIC =\(180^0\) 

       EIB = \(180^0-120^0\)

     EIB = \(60^0\)

    Mà EIB đối đỉnh góc DIC 

suy ra DIC = EIB =  \(60^0\)

vì IF là tia phân giác góc BIC 

nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)\(60^0\)

EIF = BIE + BIF = \(60^0+60^0=120^0\)

DIF = DIC + CIF =  \(60^0+60^0=120^0\)

xét tam giác EIF và DIF có 

EIF = DIF = \(120^0\)

IF là cạnh chung 

IE = ID 

suy ra tam giác EIF = tam giác DIF ( c-g-c )

suy ra EF = DF 

ta có góc BIC đối đỉnh góc EID 

nên BIC = EID = \(120^0\)

xét tam giác EIF và EID có 

EID = EIF =\(120^0\)

ID = IF 

IE cạnh chung 

suy ra tam giác DIE = tam giác FIE ( c-g-c )

suy ra ED = EF 

mà EF = DF 

suy ra ED = EF = DF

suy ra tam giác EDF là tam giác đều 

d,

ta có IE = IF = ID 

nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF 

mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó 

suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF