Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 11 2018 lúc 21:38

Áp dụng BĐT Bunhia:

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\)

\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3.\left(4\left(a+b+c\right)+3\right)}=\sqrt{21}< \sqrt{25}=5\)

Vậy \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)

Phúc Phan Huy
Xem chi tiết
Phúc
Xem chi tiết
Hoàng Đức Khải
14 tháng 12 2017 lúc 15:57

ta có:\(a,b,c\ge0;a+b+c=4\)

\(\Rightarrow a+b\le4\)\(mà\)\(a,b\ge0\)\(\Rightarrow0\le a+b\le4\left(1\right)\)

\(\Rightarrow\sqrt{a+b}\le2\)

\(\Rightarrow2-\sqrt{a+b}\ge0\)\(\left(2\right)\)

Từ (1) và(2)\(\Rightarrow\sqrt{a+b}\left(2-\sqrt{a+b}\right)\ge0\)

\(\Rightarrow2\sqrt{a+b}\ge a+b\)

CMTT:\(2\sqrt{b+c}\ge b+c;2\sqrt{c+a}\ge c+a\)

\(\Rightarrow2\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\ge2\left(a+b+c\right)\)

Mà a+b+c=4\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge4\)

Dấu "="xảy ra khi \(\left(a;b;c\right)=\left(4;0;0\right);\left(0;4;0\right);\left(0;0;4\right)\)

no
Xem chi tiết
zZ Tao Láo Nhưng Tao Khô...
24 tháng 1 2016 lúc 6:45

lấy bút xóa mà xóa hết là khỏe

Real Madrid
24 tháng 1 2016 lúc 7:02

\(botay.com.vn\)

no
24 tháng 1 2016 lúc 10:34

giai dum cai dang can gap

 

phanvan duc
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
TTHN
Xem chi tiết
Dương Phúc Thắng
19 tháng 11 2017 lúc 11:31

dùng bđt cauchy chứng minh biểu thức trên >=2 rồi chứng minh dấu = không xảy ra

bui thi nhat linh
Xem chi tiết
Nguyễn Thảo Nhi
Xem chi tiết
Phước Nguyễn
9 tháng 8 2016 lúc 11:12

Cho  \(a,b,c\in Q\)  thỏa mãn  \(a+b\sqrt[3]{2}+c\sqrt[3]{4}=0\)   \(\left(i\right)\)

Chứng minh rằng:  \(a=b=c=0\)

\(-------\)

Chứng minh bổ đề:  \(\sqrt[3]{2}\)  là một số vô tỉ.

Đối với loại bài toán trên, ta cần dùng phương pháp phản chứng để tìm đáp án.

Thật vậy, giả sử  \(R=\sqrt[3]{2}\)  là một số hữu tỉ.

Tức là phải tồn tại các số nguyên  \(m,n\)  sao cho  \(R=\frac{m}{n}\) nên  \(R\) là nghiệm hữu  tỉ của phương trình:

\(\left(\frac{m}{n}\right)^3=2;\)

Suy ra  \(m\inƯ\left(2\right),\)   \(n\inƯ\left(1\right)\)  

Tuy nhiên, lại không tồn tại  \(m\) nào  là ước của  \(2\)  mà lũy thừa \(3\) (lập phương) bằng  \(2\) 

Do đó, suy ra điều giả sử sai!

Vậy,  \(R\)  là một số vô tỉ.

\(-------\)

Ta có:

\(\left(i\right)\)  \(\Rightarrow\)  \(c\sqrt[3]{2^2}+b\sqrt[3]{2}+a=0\)  \(\left(ii\right)\)

Đặt  \(a=z;\)  \(b=y;\)và   \(c=x\)  \(\Rightarrow\)  \(x,y,z\in Q\)

Ta biểu diễn lại phương trình   \(\left(ii\right)\)  dưới dạng ba biến số  \(x,y,z\)  như sau:

\(x\sqrt[3]{2^2}+y\sqrt[3]{2}+z=0\)  \(\left(\alpha\right)\)

Giả sử phương trình  \(\left(\alpha\right)\) tồn tại với ba ẩn  \(x,y,z\)  được xác định, ta có:

\(y\sqrt[3]{2^2}+z\sqrt[3]{2}+2x=0\)  \(\left(\beta\right)\)

Từ  \(\left(\alpha\right);\left(\beta\right)\)  suy ra được  \(\left(y^2-xz\right)\sqrt[3]{2}=\left(2x^2-yz\right)\)

Nếu  \(2x^2-yz\ne0\)  \(\Rightarrow\)  \(\sqrt[3]{2}=\frac{2x^2-yz}{y^2-xz}\)  là một số hữu tỉ. Trái với giả thiết!

\(\Rightarrow\)  \(\hept{\begin{cases}y^2-xz=0\\2x^2-yz=0\end{cases}}\)  \(\Rightarrow\)  \(\hept{\begin{cases}y^3=xyz\\yz=2x^2\end{cases}}\)

\(\Rightarrow\)  \(y^3=2x^3\)  hay nói cách khác,  \(y=x\sqrt[3]{2}\)

Nếu   \(y\ne0\)  thì  \(\sqrt[3]{2}=\frac{y}{x}\in Q\)   (mâu thuẫn với giả thiết theo bổ đề trên)

\(\Rightarrow\) \(x=0;y=0\)  

Từ đó, ta dễ dàng chứng minh được  \(z=0\)

Do đó,  \(a=0;b=0;c=0\)  (theo cách đặt trên)

Ngược lại, nếu  \(a=b=c=0\) thì vẫn thỏa mãn  \(\left(i\right)\)  luôn đúng!

Vậy,  tóm lại tất cả các điều đã nêu trên, kết luận   \(a=b=c=0\)

doan ho thanh thao
28 tháng 7 2017 lúc 15:11

khó quá bạn ơi mik ko biết

xin lỗi bạn nha