Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le vi dai
Xem chi tiết
danh anh
Xem chi tiết
Trương Thị Hải Anh
Xem chi tiết
ngonhuminh
2 tháng 3 2018 lúc 15:30

\(\left\{{}\begin{matrix}x;y>0\\x+y=1\end{matrix}\right.\)\(\Rightarrow0< xy=t\le\dfrac{1}{4}\)

\(x^4+y^4=\left(1-2t\right)^2-2t\)

\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge5\Leftrightarrow A=8\left[\left(1-2t\right)^2-2t\right]+\dfrac{1}{t}-5\ge0\)

\(\Leftrightarrow16t^2-32t+\dfrac{1}{t}+3\ge0\)\(\Leftrightarrow16t^3-32t^2+3t+1\ge0\)

<=>\(16t^3-4t^2-28t^2+7t-4t+1\ge0\)

\(\Leftrightarrow4t^2\left(4t-1\right)-7t\left(4t-1\right)-\left(4t-1\right)\ge0\)

\(\Leftrightarrow\left(4t-1\right)\left(4t^2-7t-1\right)\ge0\)

\(\Leftrightarrow B=\left(4t-1\right)\left(8t-7-\sqrt{65}\right)\left(8t-7+\sqrt{65}\right)\ge0\)

\(0< t\le\dfrac{1}{4}\Rightarrow\)\(\left\{{}\begin{matrix}4t-1\le0\\8t-7+\sqrt{65}>0\\8t-7-\sqrt{5}< 0\end{matrix}\right.\) \(\Rightarrow B\ge0\)

mọi phép biến đổi <=> => dpcm

Unruly Kid
3 tháng 3 2018 lúc 11:54

Sử dụng BĐT Cauchy-Schwarz nhiều lần, cộng với BĐT phụ \(\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\), ta có:

\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge\dfrac{8\left(x^2+y^2\right)^2}{2}+\dfrac{4}{\left(x+y\right)^2}=4\left(x^2+y^2\right)^2+4\ge4\left[\dfrac{\left(x+y\right)^2}{2}\right]^2+4=5\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)

Ngô Bá Hùng
3 tháng 9 2019 lúc 15:19

Hỏi đáp Toán

Vương Hoàng Minh
Xem chi tiết
Hạnh Trần
7 tháng 5 2015 lúc 21:36

 có bđt: a²+b² ≥ (a+b)²/2 (*) 
(*) <=> 2a²+2b² ≥ a²+b²+2ab <=> a²+b²-2ab ≥ 0 <=> (a-b)² ≥ 0 bđt đúng, dấu "=" khi a = b 
- - - 
ad (*) 2 lần liên tiếp: 
x^4 + y^4 ≥ (x²+y²)²/2 ≥ [(x+y)²/2]²/2 = (x+y)^4 /8 = 1/8 
=> 8(x^4 + y^4) ≥ 1 (*) 

mặt khác, có bđt: (x-y)² ≥ 0 <=> x²+y² ≥ 2xy <=> x²+y²+2xy ≥ 4xy <=> (x+y)² ≥ 4xy 
=> 1/xy ≥ 4/(x+y)² = 4 (**) 

(*) + (**): 8(x^4 + y^4) + 1/xy ≥ 1+4 = 5 (đpcm) dấu "=" khi x = y = 1/2 

dbrby
Xem chi tiết
Quỳnh Hương
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 9 2016 lúc 11:57

Từ giả thiết : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow xy+yz+zx=xyz\)

Ta có : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Vì hai vế luôn dương nên ta bình phương hai vế được : 

\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\ge\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

Xét \(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)

\(=\left(x+y+z\right)+\left(xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)

Xét \(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

\(=xyz+\left(x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

Suy ra : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)

\(\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (*)

Mà theo bất đẳng thức Bunhiacopxki , ta có : 

\(\sqrt{\left(x+yz\right)}.\sqrt{y+zx}\ge\sqrt{xy}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\) (1)

\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)(2)

\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)(3)

Cộng (1) , (2) và (3) theo vế ta được (*) đúng

Vậy bđt ban đầu được chứng minh.

Bùi Thúy Oanh
19 tháng 9 2016 lúc 20:57

chịu thua

Vo Thi Minh Dao
Xem chi tiết
Duc Nguyendinh
26 tháng 10 2018 lúc 22:54

Là sao ko hiểu đề

Minh Hiếu Nguyễn
Xem chi tiết
Kinh Luan Tran
Xem chi tiết
Nguyễn Nhật Minh
31 tháng 12 2015 lúc 21:25

\(x+y=1\ge2\sqrt{xy}\Leftrightarrow xy\le\frac{1}{4}\)

\(A=8\left(x^4+y^4\right)+\frac{1}{xy}\ge16x^2y^2+\frac{1}{xy}=16x^2y^2+\frac{1}{4xy}+\frac{1}{4xy}+\frac{1}{2xy}\ge3\sqrt[3]{16x^2y^2.\frac{1}{4xy}.\frac{1}{4xy}}+\frac{1}{2.\frac{1}{4}}=5\)

Dâu ' = ' xảy ra khi  x =y = 1/2