Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Mai Anh
Xem chi tiết
nguyễn thùy linh
30 tháng 11 2017 lúc 18:14

 A=[(-4x-8)+13]/(x+2) 
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z) 
hay (x+2) thuộc Ư(13)={-1;1;13;-13} 
tìm x 
B=[(x²-1)+6]/(x-1) 
=x+1+6/(x-1) 
làm tiếp như A 
C=[(x²+3x+2)-3]/(x+2) 
=[(x+2)(x+1)-3]/(x+2) 
=x+1-3/(x+2) 
làm tiếp như A 
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không 
3,4 cũng vậy

Bích Ngọc
Xem chi tiết
Đạt Trần
1 tháng 8 2017 lúc 17:21

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

mà A\(\le0\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\)​ phải bằng 0 đê thỏa mãn điều kiện

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy....

b;c)I hệt câu a nên làm tương tự nhá

d)

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)

B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)

Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)

Vậy....

 Mashiro Shiina
1 tháng 8 2017 lúc 17:29

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|\ge0\\\left|y+\dfrac{4}{3}\right|\ge0\\\left|z+\dfrac{7}{2}\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\Rightarrow x=-\dfrac{9}{2}\\\left|y+\dfrac{4}{3}\right|=0\Rightarrow y=-\dfrac{4}{3}\\\left|z+\dfrac{7}{2}\right|=0\Rightarrow z=-\dfrac{7}{2}\end{matrix}\right.\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|\ge0\\\left|y-\dfrac{2}{5}\right|\ge0\\\left|z+\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\\\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{2}{5}\right|=0\Rightarrow y=\dfrac{2}{5}\\\left|z+\dfrac{1}{2}\right|=0\Rightarrow z=-\dfrac{1}{2}\end{matrix}\right.\)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|\ge0\\ \left|y+\dfrac{1980}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{matrix}\right.\)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1980}{1975}\right|+\left|z-2004\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\Rightarrow x=-\dfrac{19}{5}\\ \left|y+\dfrac{1980}{1975}\right|=0\Rightarrow y=-\dfrac{1980}{1975}\\\left|z-2004\right|=0\Rightarrow z=2004\end{matrix}\right.\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|\ge0\\ \left|y-\dfrac{1}{5}\right|\ge0\\\left|x+y+z\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{1}{5}\right|=0\Rightarrow y=\dfrac{1}{5}\\\left|x+y+z\right|=0\Rightarrow z+-\dfrac{11}{20}=0\Rightarrow z=\dfrac{11}{20}\end{matrix}\right.\)

DƯƠNG PHAN KHÁNH DƯƠNG
1 tháng 8 2017 lúc 18:24

Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)

\(\Rightarrow A\ge0\)

Mà ĐK đề là \(A\le0\)

\(\Rightarrow A=0\)

\(\left[{}\begin{matrix}\left|x+\dfrac{3}{4}=0\right|\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{2}{5}=0\right|\Rightarrow y=\dfrac{2}{5}\\\left|z+\dfrac{1}{2}=0\right|\Rightarrow z=-\dfrac{1}{2}\end{matrix}\right.\)

Các câu còn lại tương tự nhé

Bích Ngọc
Xem chi tiết
Tiểu Thang Viên
Xem chi tiết
Chicchana Mune No Tokime...
7 tháng 1 2017 lúc 8:52

/x+5/ bé hơn hoặc bằng 2

=> x+5 thuoc {-2 ,-1,0 ,1,2}

thay 0 vào ta có

x+5=0=> x=-5

Thay 1 vào ta có

x+5=1=>x=-4

Thay 2 vào ta có:

x+5=2=>x=-3

Thay -1 vào ta có

x+5=-1=>x=-6

Thay -2 vào ta có:

x+5=-2=>x=-7

k mk nhé mk làm đầy đủ và tuyệt đối chính xc

Hồng Nguyễn Thị
7 tháng 1 2017 lúc 8:46

/ x + 5 / bé hơn hoặc bằng 2 => x + 5 thuộc [ -2,-1,0,1,2 ]
x + 5 = 0 => x= -5
x + 5 = 1 => x= -4
x + 5 = 2 => x= -3
x + 5 = -1 => x= -6
x + 5 = -2 => x= -7

Nguyễn Lam Giang
Xem chi tiết
Phạm Lê Thiên Triệu
29 tháng 11 2018 lúc 9:37

ta có:

|x|\(\ge\)0

|y|\(\ge\)0

=>|x|+|y|\(\ge\)0

mà:|x|+|y|\(\le\)0

=>|x|+|y|=0

=>|x|=|y|=0

=>x=y=0

Huỳnh Thị Bảo Ngọc
Xem chi tiết
Bùi khánh linh
29 tháng 4 2020 lúc 20:27

-21/3 bé hơn hoặc =x bé hơn hoặc =2

Khách vãng lai đã xóa
Hhhuhh
Xem chi tiết
Nguyen Thi Yen Anh
Xem chi tiết
Nguyễn Anh Quân
27 tháng 12 2017 lúc 20:20

Vì |x-20| và |y+x-1| đều >=0 => |x-20|+|y+x-1| >=0

Mà |x-20| + |y+x-1| < = 0 => |x-20| + |y+x-1| = 0 khi x-20 = 0 và y+x-1 = 0

<=> x=20 ; y = -19

Vậy ...........

k mk nha

nguyen thu phuong
27 tháng 12 2017 lúc 20:26

Ta có:\(\left|x-20\right|+\left|y+x-1\right|\)< hoặc = 0

mà giá trị tuyệt đối của một số lớn hơn hoặc bằng 0

=> \(\left|x-20\right|+\left|y+x-1\right|=0\)

Vậy \(x-20=0\)

       \(20+0=x\)

                   \(x=20\)     

và \(y+x-1=0\)thay x = 20, ta có:

    \(y+20-1=0\)

    \(y=0-20+1\)

    \(y=-20+1\)

    \(y=-19\)

Vậy \(x=20;y=-19\)

huyen nguyen
Xem chi tiết

Ta có: \(\left|x+20\right|;\left|y-11\right|;\left|z+2003\right|\ge0\)

\(\Rightarrow\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|\ge0\)

Theo đề: \(\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|\le0\)

\(\Rightarrow\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x+20\right|=0\\\left|y-11\right|=0\\\left|z+2003\right|=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-20\\y=11\\z=-2003\end{cases}}\)