Cho a,b,c > 0 và a + b + c = 1. Tìm min \(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\)
Cho a,b,c >0: abc=1.Tìm min: A=\(\frac{a^2}{a+b+b^3c}+\frac{b^2}{b+c+c^3a}+\frac{c^2}{c+a+a^3b}\)
Tử là mũ 2 thật hả bạn. Mũ 3 thì giải được còn mũ 2 thì vẫn chưa nghĩ ra
Cho a,b,c > 0 thỏa mãn a2+b2+c2=1
Tìm min \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}\)
ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^
nè đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\
Cho a,b,c >0 và a+b+c=3
Tìm min \(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
\(P=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
\(\ge a-\frac{ab^2}{2b}+b-\frac{bc^2}{2c}+c-\frac{ca^2}{2c}\) (AM-GM)
\(\ge a-\frac{ab}{2}+b-\frac{bc}{2}+c-\frac{ac}{2}\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{6}\ge3-\frac{3}{2}=\frac{3}{2}\)
Vay MinP=3/2 dau = xay ra khi a=b=c=1
Cho a;b;c>0 thoả mãn: \(\frac{1}{1+a}+\frac{2}{2+b}+\frac{3}{3+c}\le1\) 1. Tìm min S=abc
đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)
quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).
nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)
mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)
nên x+ y + z \(\ge\)6 (2)
từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.
dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.
vậy Min S = 48.
hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai
Cho\(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\) Tìm Min\(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\)
\(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(>=\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}\)(bđt svacxo)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{1}{ab+ac+bc}+\frac{7}{ab+ac+bc}\)
\(>=\frac{9}{a^2+b^2+c^2+ab+ac+bc+ac+ac+bc}+\frac{7}{ab+ac+bc}\)(bđt svacxo)
\(=\frac{9}{a^2+b^2+c^2+2ab+2ac+2bc}+\frac{7}{ab+ac+bc}=\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+ac+bc}\)
\(=\frac{9}{1}+\frac{7}{ab+ac+bc}=9+\frac{7}{ab+ac+bc}\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc>=ab+ac+bc+2ab+2ac+2bc\)
\(=3ab+3ac+3bc=3\left(ab+ac+bc\right)\Rightarrow\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot1=\frac{1}{3}>=ab+ac+bc\Rightarrow ab+ac+bc< =\frac{1}{3}\)
\(\Rightarrow9+\frac{7}{ab+ac+bc}>=9+\frac{7}{\frac{1}{3}}=9+7\cdot3=9+21=30\)
\(\Rightarrow A>=30\)dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
vậy min A là 30 khi \(a=b=c=\frac{1}{3}\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)
Với a,b,c>0 và a+b+c=1. Tìm min \(M=\frac{9}{1-2\left(ab+bc+ac\right)}+\frac{2}{abc}\)
Cho a,b,c>0;abc=1. Min E=\(\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\)
cho a;b;c>0 thỏa mãn abc+ab+bc+ca=2.tìm min của
\(P=\frac{1}{ab+a+b}+\frac{1}{bc+b+c}+\frac{1}{ca+c+a}\)
Cho a,b,c > 0 thỏa mãn a+b+c=1. Tìm Min \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}+\frac{1}{9abc}\)
\(A\ge\frac{9}{a+2+b+2+c+2}+\frac{1}{9abc}\)
\(\Rightarrow A\ge\frac{9}{7}+\frac{1}{9abc}\)
Theo BĐT AM-GM ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow abc\le\frac{1}{27}\)
\(\Rightarrow\frac{1}{9abc}\ge3\)
Do đó ta có:
\(A\ge\frac{9}{7}+3=\frac{30}{7}\)