Chứng minh rằng tổng: (32021 + 35) chia hết cho 9
Ai làm nhanh và đúng mk sẽ tick cho
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ai giải đúng và nhanh nhất mk sẽ tick nha , nhớ là làm thật đúng đó , vì mk đag rất cần nha !
Cho B = 1 + 3 + 32 + 33 + ......... + 399
Chứng minh rằng B chia hết cho 4 .
Ta co: B= 1 + 3 +32 + 33 + ....... + 399
= (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3)
= (1 + 3)(1 + 32 +34 + ......... + 398)
= 4(1 + 32 +34 + ........... + 398) \(⋮\)4
Vay B \(⋮\)4
k cho mk nha
B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+...+398(1+3)
=4+32.4+.....+398.4
=4.(1+32+...+398)
vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)
Ta có: B= (1+3)+ (32+33)+(34+35) +.....+ (398+399)
= 4+ 32(3+9)+34(3+9)+.....+ 398(3+9)
= 4 + 32.12+34.12+....+ 398.12 chia hết cho 4
Vậy B chia hết cho 4
Mik nghĩ là làm như thế
Hihi
chứng minh 10^10 + 14 chia hết cho 3 và 5
Mình sẽ tick cho bạn làm nhanh đúng
1 , tổng của ba STN liên tiếp có chia hết cho 3 ko
2, chứng tỏ rằng trong 3 STN liên tiếp có một số chia hết cho 3 ko
giúp mk đi mk hứa sau kỳ thi sẽ tick cho bạn nào tl chính xác nhất và đúng nhất và nhanh nhất
1. Gọi ba số tự nhiên liên tiếp là n , n + 1 và n + 2
=> Tổng của chúng là : n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3 ( đpcm )
2 . Trong 3 số tự nhiên liên tiếp có 1 trong 3 dạng 3k ; 3 + 1 ; 3k + 3
Vậy có 1 số chia hết cho 3 là 3k
2, gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
tổng của 3 số : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3( a.1 ) là 1 số chia hết cho 3
vậy , tổng 3 số tự nhiên liên tiếp chia hết cho 3
hok tốt#
1. Gọi 3 số tự nhiên liên tiếp là:
a,a+1,a+2 (a E N)
=> a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
Vậy: tổng của 3 STN liên tiếp chia hết cho 3
2. Gọi 3 số tự nhiên liên tiếp là:
a,a+1,a+2 (a E N). a có dạng 3k,3k+1,3k+2 (k E N)
+) a có dạng 3k=> a chia hết cho 3
+) a có dạng 3k+1=> a+2=3k+3 cbia hết cho 3
+) a có dạng 3k+2=>a+1=3k+3 chia hết cho 3
Vậy: trong 3 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3
chứng minh rằng :( 10^28 +8 ) chia hết cho 36
ai làm nhanh và đúng mình tick cho
Ta có:
1000 chia hết cho 8 => 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8
và 8 chia hết cho 8
=>10^28+8 chia hết cho 8 (1)
Lại có 10^28+8= 1000....08(27 CS 0)
=>10^28+8 chia hết cho 9 (2)
Lại vì ƯCLN (8;9)=1 (3)
Từ (1);(2);(3)=>10^28+8 chia hết cho 72
k mk nha
*Chứng minh rằng (10^28+8) chia hết cho 4:
Ta có:10^28=10^2.10^26 mà 10^2 chia hết cho 4 nên 10^2.10^26 chia hết cho 4.(1)
8 chia hết cho 4.(2)
Từ (1) và (2) ta thấy(10^28+8) chia hết cho 4.(3)
*Chứng minh rằng (10^28+8) chia hết cho 9:
Ta có : 10^28=100..00(29 chữ số,28 chữ số 0)
10^28+8=1000..008(29 chữ số , 27 chữ số 0)
Tổng các chữ số của tổng đó là:
1+0.27+8=9 chia hết cho 9(4)
Vậy từ (3) và (4) ta có (10^28+8) chia hết cho 36.
chứng minh rằng nếu có : abcdef chia hết cho 7 thì fabcde chia hết cho 7
Ai làm nhanh và đúng mình sẽ LIKE
chứng minh rằng nếu có : abcdef chia hết cho 7 thì fabcde chia hết cho
Ai làm nhanh và đúng mình sẽ LIKE
Ta có:A = 8n +111...11 (n chữ số 1) ; (n là số tự nhiên)
Hãy chứng minh rằng A chia hết cho 9.
Bạn nào làm đúng và nhanh nhất. Tớ sẽ tick cho. ^.^^.^^.^
Chứng minh rằng: Trong 5 số tự nhiên bất kỳ bao giờ cũng tồn tại 3 số có tổng chia hết cho 3.
Ai trả lời nhanh nhất và đúng nhất thì mình sẽ tick cho người đấy và kết bạn nha !!!!
Cho x;y thuộc n biết 6x+11y chia hết cho 31 chứng minh rằng x=7y chia hết cho 31
ai làm đúng và nhanh nhất mình tick cho
Những đứa viết ''chtt'' là những đứa học dốt,lười suy nghĩ,chỉ biết ăn hôi bài người khác để kiếm tick
=>đó là những đứa nhục nhã,tham lam,lười biếng.
Ta có
6x+11y chia hết cho 31
=>6x+11y+31y cũng cua hết cho 31
<=>6x+42y chia hết cho 31
<=>6(x+7y) chia hết cho 31
Vì 6 không chia hết cho 31
=>x+7y chia hết cho 31
Và điều ngược lại đúng,bạn tự CM điều ngược lại nha
Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.