Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng vân anh
Xem chi tiết
Đặng vân anh
Xem chi tiết
Đặng vân anh
Xem chi tiết
Lã Mai Linh
Xem chi tiết
Cathy Trang
Xem chi tiết
Hoàng Thị Ngọc Anh
24 tháng 12 2016 lúc 22:19

câu này đề sai nha bn

Phạm Mỹ Dung
11 tháng 12 2017 lúc 14:35

mk thấy nó cứ sai sai ấy nhonhung

asunayuuki
11 tháng 12 2017 lúc 14:41

bạn ơi M, N lần lượt là trung điểm của AC và AB mà

phuongtran
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 7:39

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh

Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)

Vì N là trung điểm AB và CE nên ACBE là hbh

Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)

\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)

phuongtran
Xem chi tiết
Thư Phan
2 tháng 12 2021 lúc 9:01

Tham khảo

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)

Tạ Thu Phương
Xem chi tiết
Hoàng Thị Ngọc Anh
26 tháng 11 2016 lúc 21:42

Đề bài sai rồi bạn, MD = ME sửa thành MD = MB

Lê Hoàng Mỹ Duyên
Xem chi tiết
Yêu nè
10 tháng 1 2020 lúc 20:01

A B C M N D E

a, +)Xét \(\Delta BCN\) và \(\Delta AEN\) có:

NC= NE (GT)

\(\widehat{BNC}=\widehat{ANE}\) ( đối đỉnh)

BN=NA (GT)

\(\Rightarrow\Delta BCN=\Delta AEN\)  (c-g-c)

b, Theo câu a, ta có  \(\Delta BCN=\Delta AEN\)

=> BC=AE  (2 cạnh tương ứng)           (1)

c, Xét \(\Delta ADM=\Delta CBM\)

AM=BM  (gt)

\(\widehat{AMD}=\widehat{CMB}\) (đối đỉnh)

DM=BM  (gt)

\(\Rightarrow\Delta ADM=\Delta CBM\)

=> AD= BC  ( 2 cạnh tương ứng)   (2)

Từ (1) và (2)  => AD= AE

c,  Theo câu a, ta có \(\Delta BCN=\Delta AEN\)

      =>\(\widehat{CBN}=\widehat{EAN}\)( 2 góc tương ứng)

Mà 2 góc này ở vị trí SLT => AE//BC   (*1)

Theo câu b ta có \(\Delta ADM=\Delta CBM\)

             =>  \(\widehat{ADM}=\widehat{CBM}\) ( 2 goc t/ứ)

Mà 2 góc này ở vị trí SLT => AD//BC   (*2)

Từ (*1) và (*2) => E, A, D thẳng hàng  (theo tiên đề Ơ- clic)

Mở rộng thêm nha

Từ E, A ,D thẳng hàng  =>A nằm giữa E và D  ( vs kiến thưc lp 7 thì suy a luôn v)

Kết hợp vs cả cái AE= AD => A là trung điểm của DE 

Khách vãng lai đã xóa