Cho \(x^2+\frac{8}{x^2}+\frac{y^2}{8}=8\)
Tìm GTLN và GTNN của xy + 2024
Cho x,y là các số khác 0 thỏa mãn \(8+\frac{8}{x^2}+\frac{y^2}{8}=8\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=xy+2024
Cho 2 số x,y khác 0 thỏa mãn :
\(x^2 + \frac{8}{x^2} + \frac{y^2}{8} = 8\)
Tìm GTNN của P = xy +2019
1=2018x+2019y≥(2018+2019)2x+y⇒x+y≥(2018+2019)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
xy=20182019" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
Cho x,y,z>0 thỏa mãn xy+yz+zx=3
Tìm GTLN của C=\(\frac{x^2}{\sqrt{x^3+8}}\)+\(\frac{y^2}{\sqrt{y^3+8}}\)+\(\frac{z^2}{\sqrt{z^3+8}}\)
tìm GTNN của : |3x-7|+|3x-2|+8
cho x-y =2 . Tìm GTNN của biểu thức B= |2x+1|=|2y+1|
tìm GTLN của : x+\(\frac{1}{2}\)-|x-\(\frac{2}{3}\)|
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=3\end{cases}}\)Tìm GTNN của \(A=\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)
=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)
=>\(x+y+z\ge3\)
Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)
=>TS/MS \(\ge1\)
=>A\(\ge1\)
Dấu = khi x=y=z=1
x,y,z, dương tm:x+y+z>=3. Tìm GTNN của P= \(\frac{x^2}{yz+\sqrt{8+x^3}}+\frac{y^2}{xz+\sqrt{8+y^3}}+\frac{z^2}{xy+\sqrt{8+z^3}}\)
cho 2 số x, y khác 0 thoả mãn x2+ \(\frac{8}{x^2}\) + \(\frac{y^2}{8}\) = 8. Tính giá trị nhỏ nhất của biểu thức S=xy+2024
Cho hình chữ nhật ABCD, tăng cạnh AB 36m, cạnh BC giảm 16% thì diện tíchmới lớn hơn diện tích cũ là 5%.độ dài ab sau khi tăng là...
Giúp tớ vs
Cho x,y là các số khác 0 thỏa mãn \(8+\frac{8}{x^2}+\frac{y^2}{8}=8\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=xy+2024
Cho x,y là các số khác 0 thỏa mãn \(x^2+\frac{8}{x^2}+\frac{y^2}{8}=8\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=xy+2024