Cho tam giác ABC nhọn có B lớn hơn C Kẻ AH vuông góc BC và đường phân giác AD
a,chứng minh D nằm giữa H và C
b,Chứng minh HAD bằng góc B trừ góc C : 2
c,tính góc A biết HAD=15 Độ và 3nhân góc B bằng 5nhân góc C
Cho tam giác ABC có góc B > góc C. Kẻ AH vuông góc với BC tại H, kẻ đường phân giác AD của góc A với D thuộc BC
a, Chứng minh rằng : H nằm giữa B và D.
b, Chứng minh rằng: Góc HAD= \(\frac{B-C}{2}\)
c, Tính số đo góc B,C biết góc HAD= 25 độ và góc A= 90 độ
Cho tam giác ABC có góc B lớn hơn góc C, đường phân giác AD. Gọi H là chân đường vuông góc kẻ từ A đến BC. C/m rằng:
a) D nằm giữa H và C.
b) Góc HAD= (góc B trừ góc C)/2
Cho tam giác ABC có góc B lớn hơn góc C, đường phân giác AD. Gọi H là chân đường vuông góc kẻ từ A đến BC. C/m rằng:
a) D nằm giữa H và C.
b) Góc HAD= (góc B trừ góc C)/2
Cho tam giác ABC có góc A > góc B > góc C phân giác AD và đường cao AH
a) Chứng minh góc C < 60 độ
b) Chứng minh góc HAD = góc B- góc C/ 2
c) Phân giác góc ngoài tại A của tam giác ABC cắt BC tại K. Tính góc AKB biết góc B - góc C = 30 độ. Tính góc B, góc C biết góc HAD = 12 độ, 3gócB = 5góc C
d) Kẻ Bx//AD; Bx cắt AK tại I. Chứng minh góc IBD > góc IAH
e) Chứng minh nếu góc A = 75 độ; góc C = 35 độ thì chu vi tam giác ABC = CK
Cho tam giác ABC có góc B > góc C. Kẻ AH | BC ( H thuộc BC). Kẻ phân giác AD của góc A (D thuộc BC)
a, Chứng minh H nằm gữa B và D
b, Chứng minh góc HAD = (góc B - góc C) : 2
c, Tính số đo góc B; C biết góc HAD = 25o; góc A = 90o
Cho tam giác ABC có góc B > góc C. Kẻ Ah | BC ( H thuộc BC). Kẻ phân giác AD của góc A (D thuộc BC)
a, Chứng minh H nằm gữa B và D
b, Chứng minh góc HAD = (góc B - góc C) : 2
c, Tính số đo góc B; C biết góc HAD = 25o; góc A = 90o
cho tam giác ABC góc B > góc C kẻ đường cao AH và đường phân giác AD
a, chứng minh Góc HAD = ( B - C ) /2
b,Tính góc A biết góc HAD =15 độ và 3B=5C
cho tam giác ABC vuông tại A và có góc B lớn hơn góc C. Kẻ AH vuông góc BC tại H, kẻ đường phân giác AD của A (D thuộc BC) , biết góc HAD = 25 độ. Số đo góc B và góc C là bao nhiêu ?
a, chứng minh tứ giác ADHB nội tiếp, xác định tâm O đường tròn ngoại tiếp tứ giác.
Ta có:
ADB^ = 1v (gt)
AHB^ = 1v (gt)
=> ABHD nội tiếp đường tròn đường kính AB.
Tâm O là trung điểm AB.
b, chứng minh góc EAD bằng HBD và OD song song HB:
Ta có:
EAD^ = ABD^ (1) ( có cạnh L)
BD là phân giác nên:
ABD^ = HBD^ (2)
(1) và (2) => EAD^ = HBD^.
*cm OD song song HB:
tam giác BOD cân và có góc AOD là góc ngoài của tam giác BOD => AOD^ = 2.ABD^ = ABC^
=> OD //Bc vì có 2 góc ở vị trí đồng vị = nhau.
c, chứng minh tứ giác HCED nội tiếp:
Ta có:
CHD^ = 90*- AHD^
mà AHD^ = ABE^ ( cùng chắn cung AD)
=> CHD^ = 90* - ABE^ (1)
mặt khác:
BEC^ = 180* - AEB^
mà AEB^ = 90 - ABE^
=> BEC^ =180* - 90* + ABE^ = 90* + ABE^ (2)
(1) + (2):
CHD^ + BEC^ = 90* - ABE^ + 90* + ABE^ = 180*
vậy tứ giác HCED nội tiếp đường tròn.
d, cho biết góc ABC bằng 60 độ và AB = a (a> 0 cho trước). Tính theo a diện tích tam giác ABC phần nằm ngoài đường tròn O:
Diện tích tam giác ABC phần nằm ngoài đường tròn (gọi là S) là phần diện tích giới hạn bỡi AC, AH và cung (ADH). và S = diện tích tam giác ABC - diện tích giới hạn bỡi AB, BH và cung (ADH) (gọi là S1)
* tính S(ABC):
tam giác L ABH có:
AH = a.sin 60* = a.√3/2
BH = a/2 ( đối diện góc 30* = 1/2 cạnh huyền)
tam giác L ABC có:
BC = a/cos 60* = 2a.
=> S(ABC) = AH.BC/2 = (a.√3/2).(2a)/2 = a^2√3/2
* tính S1:
dễ thấy:S(BOH) = S(ABH)/2 = AH.BH/4 = (a.√3/2).(a/2)/4 = a^2√3/16
tam giác cân OBH có OBH^ = 60* => BOH^ = 60*
S3 = diện tích hình quạt OBH = (60*/360*).OB^2.TT = 1/6.a^2/4.TT = a^2.TT/24
S4 =diện tích giới hạn bỡi BH và cung (BH) = S3 - S(BOH)
= a^2.TT/24 - a^2√3/16 = a^2(TT/3 -√3/2)/8
S1 = diện tích 1/2 đường tròn - S4
= a^2.TT/8 - a^2(TT/3 -√3/2)/8
= a^2(TT - TT/3 + √3/2)/8
= a^2(2TT/3 + √3/2)/8
vậy:
S = S(ABC) - S1 = a^2√3/2 - a^2(2TT/3 + √3/2)/8
=(a^2/2).[(√3 - (2TT/3 + √3/2)/4]
= a^2(45√3 -4TT)/96
-----bạn kiểm tra lại số liệu tính toán.
Bài 2:
a, Chứng minh AM. AE = AC^2:
(AB) là kí hiệu cung AB
Ta có:
sđ ACM^ = sđ (AM)/2 = sđ(AC -CM)/2 = sđ AEB^
=> tam giác ACM đồng dạng với ACE. (g.g.g) cho ta:
AC/AE =AM/AC =>AM. AE = AC^2
b, DM cắt BC tại I, AI cắt đường tròn O tại N. Chứng minh D, N, E thẳng hàng.
tam giác ADE có
DM L AE ( AMD^ = 1v góc nội tiếp chăn1/2 đường tròn)
EH L AD ( H là giao của AD và BE)
vậy EH và DM là 2 đường cao
=> AI L DE
mặt khác
DN L AI ( góc AND^ nội tiếp chắn 1/2 đường tròn)
=> DN // DE và có D chung => D, N, E thẳng hàng.
c, Cho BAC = 45độ. Tính theo R chu vi hình phẳng giới hạn bởi AB, AC và cung BDC:
Ta có:
BOC^ = 2.BAC^ = 90*
( góc ở tâm = 2 lần góc nội tiếp cùng chắn cung BC.
=> cung (BDC) = 2.TT.R/4 = TT.R/2
tam giác BOC là tam giác L cân tại O nên:
BC = R.√2 => BH = BC/2=R.√2/2
tam giác BHO là tam giác L cân, cho ta:
BH = OH = R.√2/2.
=> AH = OH + OA = R.√2/2 +R = R(1+√2/2)
tam giác L AHB có:
AB^2 = AH^2 + BH^2
= R^2.(1+√2/2)^2 + R^2/2
= R^2(1 + √2 + 1/2 + 1/2)
= R^2.(2+√2)
=> AB = R√(2 +√2 )
mà AB = AC => AB = AC= R√(2 +√2 )
chu vi hình phẳng:
CV=cung (BDC) + AB +AC = TT.R/2 + 2.R√(2 +√2 )
~~~~~~~~~~ai đi qua nhớ để lại ~~~~~~~~~~~~
Cho tam giác ABC, kẻ AH vuông góc với BC, vẽ tai phân giác AD, H và D thuộc BC, biết góc HAD bằng 15 độ và góc B+ Góc c = 90 độ . tính các góc của tam giác ABC