b, So sánh 2 phân số sau A=2014^5−1/2014^4−1 và B=2014^6−1/2014^5−1
So sánh 2 phân số : A=2015^2016+1/2015^2015+1 và B=2014^2015+1/2014^2014+1
So sánh 2 phân số: A= \(\frac{2014^{2013}+1}{2014^{2014}+1}\)và B= \(\frac{2014^{2012}+1}{2014^{2013}+1}\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
a,So sánh 2 phân số sau \(A=\frac{10^{50}+9}{10^{49}+9}\) và \(B=\frac{10^{49}+9}{10^{48}+9}\)
b, So sánh 2 phân số sau \(A=\frac{2014^5-1}{2014^4-1}\)và \(B=\frac{2014^6-1}{2014^5-1}\)
c, Cho các số dương a, b, c, d. CMR: 2015 > (1008a/d+c+a)+ (1007b/ c+d+b) + (1008c/ a+b+c) + (1007d/a+b+d) > 1007
d, Biết rằng a/b là phân số tối giản. CMR phân số sau cũng tối giản
\(\frac{a+b}{ab}\) \(\frac{a\left(2014a+b\right)}{2015a+b}\) \(\frac{a^4-b^4}{ab^2}\)
Nhớ ghi lời giải đầy đủ thì càng tốt :)))
Người lái xe trước khi đi thấy chỉ còn 3/5 thùng xăng, sợ không đủ nên người đó mua thêm 14 lít xăng nữa. Khi về tới nhà anh thấy chỉ còn 1/3 thùng xăng và tính ra xe tiêu thụ hết 30 lít xăng trong chuyến đi đó. Hỏi thùng xăng chứa bao nhiêu lít xăng?
So sánh hai phân số:
A=2014^2013+1/2014^2014+1
B=2014^2012+1/2014^2013+1
GIÚP MÌNH VỚI CÁC BẠN ƠI !
BÀI 1:
Cho A =1/5+1/5^2+1/5^3+...+1/5^99+1/5^100
a.Tính A?
So sánh A với 1/4
BÀI 2 :
So sánh :
a. A=9/a^2014+7/a^2014 và B=8/a^2014+8/a^2013 với A thuộc N*
b . So sánh A và B với A=10^2009+1/10^2010+1 và B=10^2010+1/10^2011+1
c . So sánh A=10^2016+1/ 10^2015+1 ; B=10^2015+1/10^2014+1
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
So sánh A và B :\(B=1+2+3+4+....+2014+2015\)\(A=1^2-2^2+3^2-4^2+5^2-6^2+...-2014^2+2015^2\)
Số số hạng của tổng B là:
\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)
\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)
\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)
\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)
Số số hạng của tổng A thuộc nguyên âm là:
\(\frac{2014}{2}=1007\)(số hạng)
\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)
\(A=\left(-2029105\right)+4060225\)
\(A=2031120\)
Mà \(2031120=2031120\)
\(\Rightarrow A=B\)
\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)
\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)
\(A=1+2+3+4+...+2015=B\)
So sánh phân số
A= 2^2014+1 / 2^2014
B= 2^2014+2 / 2^2014+1
chiều nay mk kt rồi.!! Please
\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
\(2^{2014}< 2^{2014}+1\)
\(\Rightarrow1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+1}\) (mẫu càng lớn thì phân số càng nhỏ)
=> A > B
Chúc bạn học tốt
Mk gải cho bạn đây
\(A=2^{2014}+\frac{1}{2^{2014}}\)
\(B=2^{2014}+\frac{2}{2^{2014}+1}\)
Ta có:Vì mỗi bên A và B đều có 22014
Vậy ta chỉ so sánh\(\frac{1}{2^{2014}}\) và \(\frac{2}{2^{2014}+1}\)
Vì \(\frac{1}{2^{2014}}< \frac{2}{2^{2014}}\)
\(\Rightarrow\)\(\frac{1}{2^{2014}}< \frac{2}{2^{2014}+1}\)
(Tớ lấy ví dụ cho cậu hiểu nha:1/2<2/2.Nếu chúng ta cộng thêm 1
vào mẫu thì ta được 1/2<2/3)
Ê An nó lớn hơn nhưng phải cùng tử chứ
So sánh: A= 2^2014+1/2^2014 và B= 2^2014+2/2^2014+1
\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
Ta có: \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)
\(\Rightarrow1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+1}\)
\(\Rightarrow\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)
\(\Rightarrow A>B\)
Tham khảo nhé ~
A= 2^2014+1/2^2014
B= 2^2014+2/2^2014+1
vì 1/2^2014<2/2^2014+1
=> A<B
cái này nhìn là bt mà ko cần chứng minh phức tạp lắm đâu bn nhìn một tí là làm dc ngay
\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
Vì \(2^{2014}< 2^{2014}+1\Rightarrow\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\Rightarrow1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+1}\) hay A > B
Vậy A > B
so sánh A=2014^2014+1/2014^2015+1 và B=2014^2013+1/2014^2014+1
Có \(2004A=\frac{2014^{2015}+2014}{2014^{2015}+1}=\frac{2014^{2015}+1+2013}{2014^{2015}+1}=1+\frac{2013}{2014^{2015}+1}\)
\(2014B=\frac{2014^{2014}+2014}{2014^{2014}+1}=\frac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\frac{2013}{2014^{2014}+1}\)
Vì \(\frac{2013}{2014^{2015}+1}< \frac{2013}{2014^{2014}+1}\)
=> \(1+\frac{2013}{2014^{2015}+1}< 1+\frac{2013}{2014^{2014}+1}\)
=> \(A< B\)