Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mạnh
Xem chi tiết
Hoàng Thị Lan Hương
26 tháng 7 2017 lúc 14:56

Ta có \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\)

\(=\frac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x-2+x+2\right)\left(x-2-x-2\right)}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{2x}{\left(x+2\right)\left(x-2\right)}\)

\(\frac{-4.2x}{\left(x+2\right)^2\left(x-2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{2x}=\frac{-4}{\left(x+2\right)\left(x-2\right)}\)

Đỗ Phương Thảo
Xem chi tiết
Chu Công Đức
20 tháng 2 2020 lúc 9:16

\(ĐKXĐ:x\ne\pm2\)

\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(=\left[\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right]\)

\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}=\frac{2x}{\left(x+2\right)^2}.\frac{-\left(x-2\right)\left(x+2\right)}{x}\)

\(=\frac{-2\left(x-2\right)}{x+2}\)

Khách vãng lai đã xóa
Bùi Anh Tuấn
20 tháng 2 2020 lúc 9:17

\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2+x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{2x}{\left(x+2\right)^2}\cdot\frac{\left(x-2\right)\left(x+2\right)}{x+4}\)

\(\Leftrightarrow\frac{2x^2-4x}{\left(x+2\right)\left(x+4\right)}\)

Khách vãng lai đã xóa
ミ★Ƥɦươŋɠ Ňɦї★彡
Xem chi tiết
Kiệt Nguyễn
26 tháng 12 2019 lúc 20:18

\(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\frac{2x+4-2x+4}{x^2-4}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{8}{x^2-4}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

Khách vãng lai đã xóa
Vũ Hải Lâm
26 tháng 12 2019 lúc 20:19

Ta có:

\(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2x+4}{x^2-4}-\frac{2x-4}{x^2-4}\right).\frac{x^2+4x+4}{8}\)

\(=\frac{0}{x^2-4}.\frac{x^2+4x+4}{8}\)

\(=0.\frac{x^2+4x+4}{8}\)

\(=0\)

Khách vãng lai đã xóa
Yukihira Souma
Xem chi tiết
Phạm Hồ Thanh Quang
15 tháng 7 2017 lúc 7:46

a) ĐKXĐ: \(x;y\ne0,x\ne\frac{y}{2},y\ne\frac{x}{2}\)
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}\)\(=\frac{y^2-4x^2}{xy\left(2x-y\right)}=\frac{\left(y-2x\right)\left(y+2x\right)}{xy\left(2x-y\right)}\)
\(=\frac{-\left(y+2x\right)}{xy}\)

b) ĐKXĐ: \(x\ne2;x\ne-2\)
\(\frac{1}{x+2}+\frac{3}{x^2-4}+\frac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)\(=\frac{1}{x+2}+\frac{3}{\left(x-2\right)\left(x+2\right)}+\frac{x-14}{\left(x+2\right)^2\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x^2+4x+4\right)-16}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x+2\right)^2-16}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x+2-4\right)\left(x+2+4\right)}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\frac{x+6}{\left(x+2\right)^2}\)

Dư Hạ Băng
Xem chi tiết
Kim Trân Ni
Xem chi tiết
KAl(SO4)2·12H2O
9 tháng 12 2019 lúc 14:47

\(\frac{3\left(x+1\right)}{x+2}-\frac{3x-6}{x^2-4}\)

\(=\frac{3\left(x+1\right)}{x+2}-\left(\frac{3x-6}{x^2-4}\right)\)

\(=\frac{3x^2-6x^2-12x+24}{x^3+2x^2-4x-8}\)

\(=\frac{3\left(x+2\right)\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x+2\right)\left(x-2\right)}\)

\(=\frac{3x-6}{x+2}\)

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
9 tháng 12 2019 lúc 14:51

\(\frac{x^2+4x+4}{1-x}.\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\)

\(=\frac{x^2+4x+4}{1-x}.\left[\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\right]\)

\(=\frac{x^4+2x^3-3x^2-4x+4}{-3x^4-15x^3-18x^2+12x+24}\)

\(=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x+2\right)}{3\left(-x+1\right)\left(x+2\right)\left(x+2\right)\left(x+2\right)}\)

\(=\frac{-x+1}{3x+6}\)

Khách vãng lai đã xóa
Quyên
Xem chi tiết
Trần Thanh Phương
11 tháng 12 2018 lúc 21:58

Bài 2 :

a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)

\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)

\(A=\frac{x-2}{x+2}\)

c) Thay x = 4 ta có :

\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)

Vậy.........

kudo shinichi
11 tháng 12 2018 lúc 21:59

\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)

\(\left(5x-2\right)\left(25x^2+10x+4\right)\)

\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)

\(=\left(5x\right)^3-2^3\)

\(=125x^3-8\)

trmn
11 tháng 12 2018 lúc 22:00

Bài 1

a,\(4x^2y^3.\frac{2}{4}x^3y=2x^5y^4\)

nguyenthithuhien
Xem chi tiết
Nguyễn Thanh Thảo
Xem chi tiết