Tính : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{19.21}\)
Thực hiện phép tính: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{19.21}\)
Ta có:\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)=\frac{1}{2}\left(1-\frac{1}{21}\right)=\frac{1}{2}.\frac{20}{21}=\frac{10}{21}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)\(+...+\frac{1}{19.21}\)
=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\right)\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{19.21}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{21}\right)\)
=\(\frac{1}{2}.\frac{20}{21}\)
=\(\frac{20}{42}=\frac{10}{21}\)
Đặt :
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)
\(\Leftrightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)
\(\Leftrightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{21}\)
\(\Leftrightarrow2A=1-\frac{1}{21}\)
\(\Leftrightarrow2A=\frac{20}{21}\)
\(\Leftrightarrow A=\frac{10}{21}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{19.21}\)
Đặt tên bthuc là A
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(2A=1-\frac{1}{21}=\frac{20}{21}\)
=>\(A=\frac{20}{21}:2=\frac{10}{21}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{17.19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{19}\right)=\frac{1}{2}.\left(\frac{18}{19}\right)\)
\(=\frac{9}{19}\)
sr nhìn nhầm đề bài
a,tính \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{19.21}\)
b,CMR A\(=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{(2n-1).(2n+1)}\le\frac{1}{2}\)
tớ làm câu b thôi, câu a nhân 1/2 lên là đc
\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)
p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)
tìm x biết: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{19\cdot21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{19\cdot21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(1-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\cdot\frac{20}{21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{10}{21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{x}{14}=\frac{10}{21}-\frac{2}{-7}\)
\(\frac{x}{14}=\frac{16}{21}\)
\(\Rightarrow x\cdot=21=14\cdot16\)
\(\Rightarrow x\cdot21=224\)
\(\Rightarrow x=\frac{224}{21}\)
Tính
A = \(\frac{3}{1.3}+\frac{1}{3.5}+...+\frac{3}{19.21}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{19.21}\)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{19.21}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{21}\right)\)
\(=\frac{3}{2}\cdot\frac{20}{21}\)
\(=\frac{10}{7}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{19.21}\)
\(\Rightarrow A=3.\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\right)\)
\(\Rightarrow A=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(\Rightarrow A=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{21}\right)\)
\(\Rightarrow A=\frac{3}{2}.\frac{20}{21}\)
\(\Rightarrow A=\frac{10}{7}\)
Vậy \(A=\frac{10}{7}\)
mk quên nói nữa chứ
hình như chỗ này phải là z nek
3/1.3 + 3/3.5 + ....+ 3/19.21
z nek bn ơi
Tính
a)S1=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
b)S2=\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
c)S3=\(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
Tính nhanh:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{3}.\frac{98}{99}\)
\(=\frac{98}{297}\)
Chuc bn học tốt
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
Đặt tổng là M
Ta có
\(M=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow M=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(\Rightarrow M=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
Tính:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009+2011}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2009.2011}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{2009}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009+2011}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)
tính
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\)
=\(1-\frac{1}{2011}\)
=\(\frac{2010}{2011}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\)
\(=\frac{1\cdot2}{2\cdot1\cdot3}+\frac{1\cdot2}{2\cdot3\cdot5}+\frac{1\cdot2}{2\cdot5\cdot7}+...+\frac{1\cdot2}{2\cdot2009\cdot2011}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{2011}\right)\)= .......
Mình không chắc là đúng đâu nha