Cho x,y là các số khác 0 thỏa mãn \(x^2+\frac{8}{x^2}+\frac{y^2}{8}=8\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=xy+2024
Cho x,y là các số khác 0 thỏa mãn \(8+\frac{8}{x^2}+\frac{y^2}{8}=8\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=xy+2024
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???
cho 2 số x, y khác 0 thoả mãn x2+ \(\frac{8}{x^2}\) + \(\frac{y^2}{8}\) = 8. Tính giá trị nhỏ nhất của biểu thức S=xy+2024
Cho hình chữ nhật ABCD, tăng cạnh AB 36m, cạnh BC giảm 16% thì diện tíchmới lớn hơn diện tích cũ là 5%.độ dài ab sau khi tăng là...
Giúp tớ vs
Cho x,y là các số khác 0 thỏa mãn \(8+\frac{8}{x^2}+\frac{y^2}{8}=8\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=xy+2024
Cho x,y là các số thỏa mãn điều kiện xy>0 và x+y=1. Tìm giá trị nhỏ nhất của biểu thức A = 8(x4 +y4 )+\(\frac{1}{xy}\) .
Cho x,y là hai số thực khác 0 thỏa mãn \(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A = 2013 - xy
Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)
Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)
Theo đề bài có
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)
Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)
\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)
\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)
\(\Leftrightarrow-0,5\le2013-A\le0,5\)
\(\Leftrightarrow2012,5\le A\le2013,5\)
Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)
Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)
Cho hai số dương x và y thỏa mãn điều kiện x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: \(8\left(x^8+y^8\right)+\frac{3}{xy}\)
Cho x,y là hai số thực khác 0 thỏa mãn \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=3\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(B=2020+xy\)
\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)
dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho
à quên đề là số thực tihf làm sao cô si được :v chắc ép vô dạng bình phương 2 hoặc 3 số
cho các số thực dương x, y thỏa mãn x+xy+y =8 tìm giá trị nhỏ nhất của biểu thức \(x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....