Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thiên Hương
Xem chi tiết
Nguyễn Minh Quang
23 tháng 8 2021 lúc 12:14

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

Khách vãng lai đã xóa
nguyen van dung
Xem chi tiết
Đỗ Đàm Phi Long
Xem chi tiết
Ho Nhat Minh
25 tháng 12 2019 lúc 13:11

\(\text{Condition}:1-2x-2x^2\ge0\)

We have:

\(A=x+\sqrt{1-2x-2x^2}\)

\(\Rightarrow M=-2A=-2x-2\sqrt{1-2x-2x^2}\)

Now we need to find min of M

We have it:

\(M=-2x-2\sqrt{1-2x-2x^2}=\left(1-2x-2x^2-2\sqrt{1-2x-2x^2}+1\right)+2x^2-2=\left(\sqrt{1-2x-2x^2}-1\right)^2+2x^2-2\ge-2\)

\(\Rightarrow-2A\ge-2\Leftrightarrow A\le1\)

Sign '=' happening when \(x=0\)

Khách vãng lai đã xóa
Hồ Quốc Khánh
Xem chi tiết
Thắng Nguyễn
26 tháng 1 2016 lúc 9:44

b)\(\sqrt{2^3+1}\) theo mình phần b như vậy ko bít đúng ko

Thắng Nguyễn
26 tháng 1 2016 lúc 9:45

a)=**** 100%

b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%

Thắng Nguyễn
26 tháng 1 2016 lúc 9:46

a)=1

b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%

Nguyễn Thị Minh Thư
Xem chi tiết
Qasalt
Xem chi tiết
Nguyễn Thị Minh Thư
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
Yeutoanhoc
24 tháng 8 2021 lúc 17:58

`B=1-\sqrt{x^2-2x+2}`

`=1-sqrt{x^2-2x+1+1}`

`=1-sqrt{(x-1)^2+1}`

Vì `(x-1)^2>=0=>(x-1)^2+1>=1`

`=>sqrt{(x-1)^2+1}>=1`

`=>B<=1-1=0`

Dấu "=" xảy ra khi `x-1=0<=>x=1`

Vậy `GTLN_B=0<=>x=1.`

Phương Thảo
Xem chi tiết
TOÁN THẦY TOÀN
3 tháng 6 2017 lúc 17:25

\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1\)

\(\Rightarrow\sqrt{x^2-2x+2}\ge1\)

\(\Rightarrow2+\sqrt{x^2-2x+2}\ge2+1=3\)

\(\Rightarrow\frac{3}{2+\sqrt{x^2-2x+2}}\le\frac{3}{3}\)

\(\Rightarrow\frac{-3}{2+\sqrt{x^2-2x+2}}\ge\frac{-3}{3}=-1\)

vậy Amin = -1 khi x=1

Không có giá trị lớn nhất bạn nhé, hoặc là viết nhầm biểu thức hoặc nhầm câu hỏi. Chúc bạn may mắn.

Hoàng Thanh Tuấn
3 tháng 6 2017 lúc 17:58

Vì \(x^2-2x+2=\left(x-1\right)^2+1\ge1\)nên ta có :

 \(\Leftrightarrow\sqrt{\left(x-1\right)^2+1}\ge1\)

\(\Leftrightarrow2+\sqrt{x^2-2x+2}\ge3\)

\(\Leftrightarrow-\frac{3}{2+\sqrt{x^2-2x+2}}\le-\frac{3}{3}=-1\)

\(\Rightarrow A_{Max}=-1\)