Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 2 2019 lúc 13:23

Ta có: p+(p+2)=2(p+1)

Vì p lẻ nên  ( p + 1 ) ⋮ 2 = > 2 ( p + 1 ) ⋮ 4 (1)

Vì p, (p+1), (p+2) là 3 số tự nhiên liên tiếp nên có ít nhất một số chia hết cho 3, mà p và (p+2) nguyên tố nên  ( p + 1 ) ⋮ 3 (2)

Từ (1) và (2) suy ra   p + ( p + 2 ) ⋮ 12 (đpcm)

Thị Hoa Nguyễn
Xem chi tiết
Thầy Giáo Toán
21 tháng 8 2015 lúc 7:14

+) Trong ba số nguyên liên tiếp, có một số chia hết cho 3. Vì \(p,p+2\) là các số nguyên tố lớn hơn 3, suy ra \(p+1\)  chia hết cho 3. Vậy \(p+\left(p+2\right)=2\left(p+1\right)\vdots3.\)

+) \(p,p+2\) là các số nguyên tố lẻ nên chia cho 4 chỉ có thể dư là 1 hoặc 3.

Nếu \(p=4k+1\to p+2=4k+3\to p+\left(p+2\right)=2\left(p+1\right)=4\left(2k+1\right)\vdots4.\)

Nếu \(p=4k+3\to p+2=4k+5\to p+\left(p+2\right)=2\left(p+1\right)=4\left(k+2\right)\vdots4.\)

Vậy tổng \(p+\left(p+2\right)\)  vừa chia hết cho \(3\) vừa chia hết cho \(4\), nên chia hết cho \(12\).

+ Ta sẽ chứng minh bằng phản chứng
- giả sử p + p + 2 không chia hết cho 12 <> p + 1 không chia hết cho 6
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn
- ....
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12

Xem chi tiết
Xyz OLM
18 tháng 6 2021 lúc 11:43

p > 3 

=> Đặt p = 3k + 1 hoặc p = 3k + 2

Khi p = 3k + 1 

=> p + 2 = 3k + 3 = 3(k + 1) 

=> p + 2 là hợp số (lọai) 

Khi p = 3k + 2

=> p + 2 = 3k + 4 (tm) 

=> p + p + 2 = 3k + 2 + 3k + 4 = 6k + 6 = 6(k + 1)

Khi k = 2t => 3k + 2 = 3.2t + 2 = 2(3t + 1) 

=> 3k + 2 là họp số loại

Khi k = 2t + 1 

=> 3k + 2 = 6t + 5 (tm)

3k + 4 = 6t + 7 (tm) 

Khi đó p + p + 2 = 6(k + 1) = 6(2t + 1 + 1) = 6(2t + 2) = 12(t + 1) \(⋮\)12

Khách vãng lai đã xóa
Phan Thảo Hiền
Xem chi tiết
Seu Vuon
27 tháng 4 2015 lúc 16:52

Đặt A = p + p +2 = 2p +2 = 2(p +1)

p +2 = p -1 +3

Xét 3 số liên tiếp : p -1 , p , p +1 có 1 và chỉ 1 số chia hết cho 3

Vì p nguyên tố lớn hơn 3 nên p không chia hết cho 3. Mặt khác p -1 không chia hết cho 3, vì nếu chia hết cho 3 thì p +2 chia hết cho 3, trái với gt là p +2 là số nguyên tố >3. Vậy chỉ còn p+1 chia hết cho 3 => 2(p +1) chia hết cho 3 tức A chia hết cho 3 (*)

Ta lại có p nguyên tố >3 nên p là số lẻ => p = 2k +1 => A = 4k + 4 chia hết cho 4 (**)

mà (3,4) =1 (***)

Từ (*) , (**), (***) => A chia hết cho 12

Nguyễn Bá Minh
6 tháng 1 2018 lúc 15:35

toi có cach khac

võ quốc anh
23 tháng 2 2018 lúc 19:52

Tau có cách khác 

Phí Ngọc Châu Anh
Xem chi tiết
Gshhhbe
13 tháng 12 2023 lúc 13:26

Yamate học ngu hay hoi

Gshhhbe
13 tháng 12 2023 lúc 13:27

Ghughi

Tạ Vũ Bá Thăng
26 tháng 10 lúc 20:03

hahaha

Huyền
Xem chi tiết
vu khanh ly
17 tháng 2 2015 lúc 18:39

huk mìk như pn thuj có 6 đề hsg đây nè

Huyền
18 tháng 2 2015 lúc 19:13

Mình giải đc r ^^ 

Le Thi Mai
2 tháng 10 2016 lúc 15:53

ớ câu c làm kiểu j bạn?

Nguyễn Văn phong
Xem chi tiết
GoKu Đại Chiến Super Man
Xem chi tiết
Đào Đức Doanh
22 tháng 12 2015 lúc 22:07

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

Diệp Ẩn
Xem chi tiết

1.Áp dụng định lý Fermat nhỏ.

Nguyễn Linh Chi
27 tháng 8 2019 lúc 14:41

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

zZz Cool Kid_new zZz
27 tháng 8 2019 lúc 14:53

Cách 2

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)

Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)

Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)

Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)

Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)

Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)

Vậy \(a^5-a⋮5\)