\(\frac{14!}{k!(14-k)!}+\frac{14!}{(k+2)!(12-k)!}=2*\frac{14!}{(k+1)!(13-k)!}\)
So sánh bằng cách nhanh nhất(ko quy đồng)
a.A=\(\frac{13+14}{14+5}\)và \(\frac{13}{14}+\frac{14}{15}\)
b.So sánh B với 2:B=\(\frac{2011}{2012}+\frac{2011}{2010}\)
c. So sánh K với\(\frac{3}{8}\):K=\(\frac{3x5+6x10+9x15+12x20+15x25}{5x7+10x14+15x21+20x28+25x35}\)
CMR
a) 14^2004+1^2002 chia hết cho 197
b) với mọi k htuoocj Z biểu thức (2k+3)^2-9 chia hết cho 4
c) với mọi k biểu thức \(\frac{k^3}{6}+\frac{k^2}{2}+\frac{k}{3}\)
Tính giá trị đẳng thức sau
\(K=-\frac{7}{9}+\frac{11}{24}+-\frac{5}{14}+\frac{2}{-9}+\frac{13}{24}\)
\(K=-\frac{7}{9}+\frac{11}{24}+-\frac{5}{14}+\frac{2}{-9}+\frac{13}{24}\)
\(K=\left(-\frac{7}{9}+-\frac{2}{9}\right)+\left(\frac{11}{24}+\frac{13}{24}\right)+-\frac{5}{14}\)
\(K=-1+1+-\frac{5}{14}\)
\(K=0+-\frac{5}{14}=-\frac{5}{14}\)
Ủng hộ tk Đúng nhé ! ^^
\(C_{14}^k+C_{14}^{k+2}=2C_{14}^{k+1}\)
\(C_{14}^k+C_{14}^{k+2}=2C_{14}^{k+1}\)
\(\Leftrightarrow\dfrac{14!}{\left(14-k\right)!k!}+\dfrac{14!}{\left(12-k\right)!\left(k+2\right)!}=\dfrac{2.14!}{\left(13-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\dfrac{14!}{k!\left(12-k\right)!}\left[\dfrac{1}{\left(14-k\right)\left(13-k\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}\right]=\dfrac{2}{\left(13-k\right)\left(k+1\right)}.\dfrac{14!}{k!\left(12-k\right)!}\)
\(\Leftrightarrow\dfrac{2k^2-24k+184}{\left(14-k\right)\left(k+2\right)\left(13-k\right)\left(k+1\right)}=\dfrac{2}{\left(13-k\right)\left(k+1\right)}\)
\(\Leftrightarrow\dfrac{k^2-12k+92}{-k^2+12k+28}=1\)
\(\Leftrightarrow k^2-12k+92=-k^2+12k+28\)
\(\Leftrightarrow k^2-12k+32=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=4\\k=8\end{matrix}\right.\)
Bài 1: Thực hiện phép tính
\(\frac{\frac{1}{4}+\frac{3}{7}-\frac{4}{5}}{0,75+\frac{9}{7}-2\frac{2}{5}}+\frac{\frac{3}{14}-\frac{2}{10}+\frac{5}{18}+\frac{7}{66}}{\frac{6}{7}-\frac{4}{5}+\frac{10}{9}+\frac{14}{13}}\)
Vừa thi về, giải đc ùi nhưng muốn xem k quả của các bạn
Mình làm như thế này nek
\(\frac{\frac{1}{4}+\frac{3}{7}-\frac{4}{5}}{0,75+\frac{9}{7}-2\frac{2}{5}}+\frac{\frac{3}{14}-\frac{2}{10}+\frac{5}{18}+\frac{7}{66}}{\frac{6}{7}-\frac{4}{5}+\frac{10}{9}+\frac{14}{33}}\)
\(=\frac{\frac{1}{4}+\frac{3}{7}-\frac{4}{5}}{\frac{2}{4}+\frac{9}{7}-\frac{12}{5}}+\frac{\frac{1}{2}\cdot\left(\frac{3}{7}-\frac{2}{5}+\frac{5}{9}+\frac{7}{33}\right)}{2\cdot\left(\frac{3}{7}-\frac{2}{5}+\frac{5}{9}+\frac{7}{33}\right)}\)
\(=\frac{\frac{1}{4}+\frac{3}{7}-\frac{4}{5}}{3\cdot\left(\frac{1}{4}+\frac{3}{7}-\frac{4}{5}\right)}+\frac{\frac{1}{2}}{2}\)
\(=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
A) Rút gọn biểu thức: 90.10^k - 10^k+2 - 10^k+1
B) Tính giá trị: A=x^15 - 8x^14 + 8^13 - 8x^12 +...-8x^2 + 8x - 5 với x=7
1+2+3+4+5+6+7+8=9+10+11+12+13+14+15=.............
bn nào k mik mik k lại cho
1.So Sánh
a) A=\(\frac{11}{2017}+\frac{4}{2019}\)và B=\(\frac{10}{2017}+\frac{10}{2019}\)
b) M=\(\frac{1}{5}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{30}+\frac{1}{61}+\frac{1}{62}và\frac{1}{2}\)
c) E= \(\frac{4116-14}{10290-35}và\)K= \(\frac{2929-101}{2.1919+404}\)
Chứng tỏ rằng:
\(T=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}< \frac{1}{2}\)
GIÚP MIK VS MN ƯI,CHI TIẾT SẼ ĐC K NHA
_ giải bừa :v _
\(T=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}\)
Ta thấy : \(\frac{1}{4^2}< \frac{1}{2.4};\frac{1}{14^2}< \frac{1}{12.14}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}< \frac{1}{2^2}+\frac{1}{2.4}+...+\frac{1}{12.14}\)
\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}\left(\frac{2}{2.4}+...+\frac{2}{12.14}\right)\)
\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{14}\right)\)
\(\Rightarrow T< \frac{1}{4}+\frac{1}{2}.\frac{3}{7}\)
\(\Rightarrow T< \frac{13}{28}\)
Mà \(\frac{13}{28}< \frac{1}{2}\Rightarrow T< \frac{1}{2}\)
....