CMR a^3-2021 chia hết cho 6 với mọi a thuộc Z
CMR: a3+5a chia hết cho 6 với mọi a thuộc Z
ta có a^3+5a= a^3-a+6a
= a(a^2-1)+6a
= a(a-1)(a+1)+6a
vì với a thuộc z thì a, a-1,a+1 là 3 số nguyên liên tiếp nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2
=> a(a-1)(a+1) chia hết cho 2 và 3
mà (2;3)=1 nên a(a-1)(a+1) chia hết cho 6
lại có 6a chia hết cho 6 với mọi a thuộc z
=> a(a-1)(a+1) +6a chia hết cho 6
hay a^3+5a chia hết cho 6
cm bằng qui nạp
thử n=1 ta có n^3+5n = 6 => dúng
giả sử đúng với n =k
ta cm đúng với n= k+1
(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6
vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2
mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết
nế k chẳn thì đương nhiên chia hết
vậy đúng n= k+ 1
theo nguyên lý qui nạp ta có điều phải chứng minh
\(a^3+5a=a\left(a^2+5\right)=a\left(a^2-25+30\right)=30a+a\left(a-5\right)\left(a+5\right)\)
cho a b thuộc z . CMR (a^3+2b^3)-(a+2b) chia hết cho 6 với mọi a b
CMR là gì vạy bạn mình ko biết
CMR là chứng minh rằng đó
Ta có a3 + 2b3 - a - 2b
= (a3 - a) + (2b3- 2b)
= a(a2 - 1) + 2b(b2 - 1)
= a(a2 - a + a - 1) + 2b(b2 - b + b - 1)
= a[a(a - 1) + (a - 1)] + 2b[b(b - 1) + (b - 1)]
= (a - 1)a(a + 1) + 2(b - 1)b(b + 1)
Nhận thấy : \(\hept{\begin{cases}\left(a-1\right)a\left(a+1\right)⋮6\\\left(b-1\right)b\left(b+1\right)⋮6\end{cases}}\left(\text{tích 3 số nguyên liên tiếp}\right)\)
=> (a - 1)a(a + 1) + 2(b - 1)b(b + 1) \(⋮6\)
=> a3 + 2b3 - (a + 2b) \(⋮\)6 (đpcm)
1. CMR: 2a^3+3a^2+a chia hết cho 6 với mọi a thuộc Z
2. CMR: a^5 - 10a^4 +35a^3 +50a^2 +24a chia hết cho 120
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
CMR a) (x^4 - 3x^3 + 5x^2 - 9x + 6) chia hết cho 6 ( với mọi x thuộc Z)
x4 - 3x3 + 5x2 - 9x + 6
= x4 - x3 - 2x3 + 2x2 + 3x2 - 3x - 6x + 6
= ( x - 1 ) ( x3 - 2x2 + 3x - 6 )
= ( x - 1 ) ( x - 2 ) ( x2 + 3 )
Vì ( x - 1 ) ( x - 2 ) là tích 2 số nguyên liên tiếp nên :
( x - 1 ) ( x - 2 ) ⋮ 2 ⇒ A ⋮ 2 (1)
- Nếu x chia 3 dư 1 thì x - 1 ⋮ 3 ⇒ A ⋮ 3
- Nếu x chia 3 dư 2 thì x - 2 ⋮ 3 ⇒ A ⋮ 3
- Nếu x chia 3 dư 0 thì x3 + 3 ⋮ 3 ⇒ A ⋮ 3
⇒ A ⋮ 3 với mọi x ϵ Z (2)
Mà ƯCLN( 1, 2 ) = 1 (3)
Từ (1) , (2) và (3) ta có :
A ⋮ 2.3 = 6 ⇒ đpcm
a, CMR a^3 + 5.a chia hết cho 6 ( với mọi a thuộc N )
b, Cho a+b+c =60 . CMR a^3 + b^3 + c^3 chia hết cho 6 với mọi a,b,c thuộc N
1. Chứng minh rằng m^3-13m chia hết cho 6 với mọi m thuộc z
2. Không dùng máy tính bỏ túi, cmr: 685^3+315^3 chia hết 25000
3.CMR: A=75.(4^1975+4^1974+...+4^2+5)+25 chia hết cho 4^1976
4. CMR:a^5-a chia hết cho 5 với mọi số nguyên a
5. a^4-b^4 chia hết cho 5 với mọi số nguyên a,b
a, cmr n^3(n+1)+2n(n+1) chia hết cho 6 với mọi n thuộc z
b, cho a+b+c=0. cmr a^3+b^3+c^3=3abc
a hình như lộn đề
b. a = - ( b + c)
\(\Leftrightarrow a^3=-\left(b+c\right)^3\)
\(\Leftrightarrow a^3=-\left(b^3+3.ab^2+3.a^2b+b^3\right)\)
\(\Leftrightarrow a^3=-b^3-3cb^2-3c^2b-b^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3bc.-a=3abc\)
chỗ nào ko hiểu gửi thư mik , gửi lun cái đề câu a nhá ^^
. Bài 1:Tìm x,biết
a; x^3-16x=0
b: 9x^2-4.(3x-2)^2=0
c: (x+2)(x^2-2x+4)+(x+2)^2
. Bài 2: CMR
a; n^3+11n chia hết cho 6 với mọi n thuộc Z
b; n^6-n^2 chia hết cho 60 với mọi n thuộc Z
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~