Cmr: tồn tại hay không số hữu tỉ x,y thoả mãn: \(x^2+y^2=3\)
Giúp mình với TT
1. Tồn tại hay không các số hữu tỉ x,y thoả mãn x^2 + y^2 = 3
2. Tồn tại hay không các số hữu tủ x,y thoả mãn x^3 + 2y^3 = 4
Giúp mình với ạ TT
1. Tồn tại hay không số hữu tỉ x,y thoả mãn x2 + y2 = 3
2. Tồn tại hay không số hữu tỉ x,y thoả mãn x3 + 2y3 = 4
Tồn tại hay không các số x,y hữu tỉ thoả mãn: \(x^3+2y^3=4\)
Chứng minh rằng không tồn tại số hữu tỉ x,y thoả mãn: x2 + y2=3
CMR không tồn tại 2 số hữu tỉ x và y trái dấu,ko đối nhau thỏa mãn đẳng thức 1/x+y=1/x+1/y
giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0
Vậy ...
Chứng minh rằng không tồn tại số hữu tỉ x thoả mãn: x2=6
ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)
mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)
chúc bạn học tốt
#)Giải :
Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6
Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)
\(\Rightarrow a^2=6b^2\)
\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)
Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)
Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6
=> đpcm
\(x^2=6\Leftrightarrow x=\sqrt{6}\)
Giả sử \(\sqrt{6}\)là số hữu tỉ, như vậy \(\sqrt{6}\)có thể viết được dưới dạng :
\(\sqrt{6}=\frac{m}{n}\)với \(m,n\inℤ\),\(\left(m,n\right)=1\)
Suy ra \(m^2=6n^2\)(1), do đó \(m^2⋮3\). Ta lại có 3 là số nguyên tố nên \(m⋮3\)(2)
Đặt m = 3k \(\left(k\inℕ\right)\).Thay vào (1) ta được \(9k^2=6n^2\)nên \(3k^2=2n^2\)
suy ra \(5n^2⋮3\)
Do (5, 3) = 1 nên \(n^2⋮3\), do đó \(n⋮3\left(3\right)\)
Từ (2) và (3) suy ra m và n cùng chia hết cho 3, trái với \(\left(m,n\right)=1\)
Như vậy \(\sqrt{6}\)không là số hữu tỉ, do đó \(\sqrt{6}\)là số vô tỉ.
Vậy x là số vô tỉ hay không tồn tại số hữu tỉ x thỏa mãn đề bài (đpcm)
CMR: không tồn tại 2 số hữu tỉ X và Y trái dấu, không đối nhau, thoả mãn đẳng thức sau :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Hoàng Uyên Minh - Toán lớp 7 - Học toán với OnlineMath
Cmr: không tồn tại x,y,z thoả mãn |x-y| + |y-z| + |z-x| = 2021
a)có tồn tại hay ko hai số dương a,b khác nhau sao cho: 1/a - 1/b = 1/a-b
b) chứng minh không tồn tại hai số hữu tỉ x,y trái dấu không đối nhau thảo mãn 1/x+y = 1/x + 1/y
a thì chắc không tồn tại rồi
Còn b thì không biết