Tìm x:
\(\left(\frac{6}{5}-x\right)^2+|-\frac{5}{7}|=\frac{27}{28}\)
Tìm x:
\(\left(\frac{6}{5}-x\right)^2+\left|-\frac{5}{7}\right|=\frac{27}{28}\)
Tìm x biết
\(|x+\frac{1}{3}|+\frac{4}{5}=|\left(-3,2\right)+\frac{2}{5}|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\left|x+\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}+\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{3}=2\\x+\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=-\frac{7}{3}\end{cases}}}\)
bạn ơi, có một chỗ chưa chuẩn .bạn kiểm tra lại giú mình. chỗ vế trái bạn thiếu \(\left(27-\frac{3}{5}\right)\). bạn bổ sung vào cho đúng nhé. dù sao vẫn cảm ơn bạn.
tìm x :\(\frac{\left(28\frac{3}{7}-27\frac{5}{9}\right).\left(2^{26}+5.4^{12}\right)}{8^{8.}\left(x-4\right)}\)
tìm x:
\(|x+\frac{1}{3}|+\frac{4}{5}=|\left(-3,2\right)+\frac{2}{5}|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{7}\right)\left(27-\frac{3^3}{7}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(A=\frac{13.4^6\left(28\frac{7}{13}-27\frac{5}{8}\right)}{59.2^{12}\left(\frac{5}{14}+\frac{5}{84}+\frac{5}{204}+\frac{5}{374}\right)}\)tìm A
tìm x biết:
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}\)\(+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
B)\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{5}{2}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
B) \(\frac{\left(x-4\right)-\left(x-7\right)}{\left(x-7\right)\left(x-4\right)}+\frac{\left(x-7\right)-\left(x-13\right)}{\left(x-13\right)\left(x-7\right)}+\frac{\left(x-13\right)-\left(x-28\right)}{\left(x-28\right)\left(x-13\right)}\)
\(=\frac{1}{x-7}-\frac{1}{x-4}+\frac{1}{x-13}-\frac{1}{x-7}+\frac{1}{x-28}-\frac{1}{x-13}\)
\(=\frac{1}{x-28}-\frac{1}{x-4}=-\frac{5}{2}+\frac{1}{x-28}\)
\(\Leftrightarrow\frac{1}{x-28}-\frac{1}{x-4}-\frac{1}{x-28}=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{x-4}=\frac{5}{2}\)
=> 5x - 20 = 2
=> 5x = 22
\(\Rightarrow x=\frac{22}{5}=4,4\)
Vậy, x = 4,4
\(3,2.\frac{15}{16}-\left(75\%+\frac{2}{7}\right):\left(-1\frac{1}{28}\right)\)
\(\left(0,25+12,5-\frac{5}{16}\right):\left[12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right]\)
\(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(14,5-\frac{8}{9}:\left(35-34\frac{8}{9}\right).\frac{9}{8}\)
\(1\frac{1}{15}-\left(\frac{1}{15}+\frac{4}{9}:\frac{-2}{3}-\frac{28}{16}.\frac{6}{35}\right)-\frac{3}{10}\)
Tìm x
\(\left(4,5-2x\right)\left(-3\frac{2}{3}\right)=\frac{11}{15}\)
\(\backslash34-x\backslash=\left(-3\right)^4\)
\(\left(4x^2-1\right)\left(\text{\x}\backslash-\frac{2}{3}\right)=0\)
\(\frac{3}{5}x-\frac{1}{2}\)\(x=\frac{-7}{20}\)
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
nhớ làm giúp mình nhá mai mình phải đi học r :<
a) \(\left|2x\frac{1}{3}\right|+\frac{5}{6}=1\)
b)\(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
c) \(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\)
d) \(\frac{2}{5}+\frac{3}{5}.\left(3x-3,7\right)=-\frac{53}{10}\)
e) \(\frac{7}{9}:\left(2+\frac{3}{4}x\right)+\frac{5}{9}=\frac{23}{27}\)
f) \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
g)\(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
h)\(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
i)\(\frac{6}{2}=\frac{-5+x}{15}\)
k)\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
Câu a \(\left|2x-\frac{1}{3}\right|+\frac{5}{6}=1\)
g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
i) \(\frac{6}{2}=\frac{-5+x}{15}\)
\(\Leftrightarrow3=\frac{x-5}{15}\)
\(\Leftrightarrow x-5=15.3\)
\(\Leftrightarrow x-5=45\)
\(\Leftrightarrow x=45+5\)
\(\Leftrightarrow x=50\)
\(\frac{13.4^6.\left(28\frac{7}{13}-27\frac{5}{18}\right)}{59.212.\left(\frac{5}{14}+\frac{5}{84}+\frac{5}{204}+\frac{5}{374}\right)}\)