Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Khánh Tạ Quốc
Xem chi tiết
Đinh Thị Thuý Quỳnh
Xem chi tiết
Lương Thị Thảo my
Xem chi tiết
qlamm
11 tháng 2 2022 lúc 22:56

Tham khảo

undefined

minh châu
Xem chi tiết
Phan Thanh Tịnh
25 tháng 8 2016 lúc 20:38

Bạn tự vẽ hình nhé .

a) Oz là phân giác góc xOy nên góc xOz = góc yOz

mà góc xOz = góc BMO(2 góc so le trong của Ox // MB) ; góc yOz  = góc AMO (2 góc so le trong của Oy // MA)

=> góc AMO = góc BMO . \(\Delta OAM;\Delta OBM\)có góc AOM = góc BOM (cmt) ; chung cạnh OM ; góc AMO = góc BMO

=> \(\Delta OAM=\Delta OBM\left(g.c.g\right)\)=> OA = OB (2 cạnh tương ứng)

b) Từ gt ta có : \(\Delta OHM,\Delta OKM\)vuông tại H,K có góc HOM = góc KOM (cmt) ; chung cạnh OM

=> \(\Delta OHM=\Delta OKM\)(cạnh huyền - góc nhọn) => MH = MK (2 cạnh tương ứng)

c) OA = OB ( cmt) ; MA = MB (2 cạnh tương ứng của \(\Delta OAM=\Delta OBM\)) nên O,M thuộc trung trực của AB

=> OM là trung trực của AB

Banh Van Bu
Xem chi tiết
BananaIsCool
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
Nguyễn Thị Trà My
Xem chi tiết
Ngô Trung Hiếu
26 tháng 8 2018 lúc 12:23

     Vì OA // MB (gt)

=> \(\widehat{AOM}\) = \(\widehat{OMB}\) (2 góc so le trong bằng nhau) 

     Vì AM // OB (gt)

=> \(\widehat{AMO}\)\(\widehat{MOB}\) (2 góc so le trong bằng nhau) 

Xét t/giác OAM và t/giác OMB , có:

OM : cạnh chung 

 \(\widehat{AOM}\)\(\widehat{OMB}\)(cmt) 

\(\widehat{AMO}\)\(\widehat{MOB}\)(cmt)

Vậy t/giác OAM = t/giác OMB (c.g.c)

=> OA = OB (2 cạnh tương ứng bằng nhau)

=> MA = MB (2 cạnh tương ứng bằng nhau)
Vậy OA = OB

       MA = MB

b) Vì Oz là tia phân giác của \(\widehat{xOy}\)

=> \(\widehat{HOM}\)\(\widehat{MOK}\)\(\frac{\widehat{xOy}}{2}\)(t/c)

Vậy \(\widehat{HOM}\)\(\widehat{MOK}\)

Từ gt , ta có : 

t/giác OHM và tam giác OKM vuông góc tại H;K

=> \(\widehat{MHO}\)= 90 độ; \(\widehat{MKO}\)= 90 độ

=> \(\widehat{MHO}\)\(\widehat{MKO}\)

Xét t/giác OHM và t/giác OKM , có:

OM : cạnh chung (gt)

\(\widehat{HOM}\)\(\widehat{MOK}\)(cmt)

\(\widehat{MHO}\)\(\widehat{MKO}\)(cmt)

Vậy t/giác OHM = t/giác OKM (g.c.g)
=> MH = MK (2 cạnh tương ứng bằng nhau) (=> đpcm)

Vậy MH = MK