Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Gia Linh
Xem chi tiết
Lê Hoàng Khánh Nam
Xem chi tiết
Trần Tiến Đạt
17 tháng 3 2023 lúc 21:17

tịt

 

Nguyễn Hà Ngân
Xem chi tiết
Mikoshiba Mikoto
16 tháng 7 2016 lúc 15:45

a.    A= 2+22+23+......+260

= 2+ (22+23)+(24+25)+......+(258+259)+260

=2+2(2+22)+23(2+22)+......+257(2+22)+260

=2+(2+22)(2+23......+257)+260

=2+ 6(2+2^3+......+2^57)+260 => cả 23 số hạng đều chia hết cho 2 => tổng chia hết cho 2 => a chia hết cho 2

b. A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+.........+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^57(1+2+2^2+2^3)

=2.15 +2^5.15+...........+2^57.15 = 15 (2+2^5+...........+2^57) => 15 chia hết cho 3 => A chia hết cho 3

k đúng cho mình nha!!!!

soyeon_Tiểu bàng giải
16 tháng 7 2016 lúc 15:28

a. Do 2; 22; 23; ...; 260 chia hết cho 2

=> A chia hết cho 2 ( đpcm)

b. A = 2 + 22 + 23 + ... + 260 ( có 60 số; 60 chia hết cho 2)

A = (2 + 22) + (23 + 24) + ... + (259 + 260)

A = 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)

A = 2.3 + 23.3 + ... + 259.3

A = 3.(2 + 23 + ... + 259) chia hết cho 3

=> A chia hết cho 3 ( đpcm)

soái cưa Vương Nguyên
16 tháng 7 2016 lúc 15:34

A=2+(22+23)+(24+25)+...+(259+260)

  =2+2.22+2.24+...+2.259

  =2+2.(22+24+...+259) chia hết cho 2

Vậy A chia hết cho 2

phần b lm tương tự nhé mik ko có thời gian lm tiếp

tích cho mik nha

  

Minh Tâm Vũ
Xem chi tiết
•๛♡长เℓℓëɾ•✰ツ
4 tháng 4 2020 lúc 9:29

Trả lời:

a) Xét tam giác AHI và AKI có :

AI là cạnh chung

góc HAI =góc KAI

góc H = góc K (=90)

suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )

suy ra góc AIH =AIK (hai góc tg ứng)

suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )

xét tam giác HIB và KIC có

HIB = KIC (chứng minh trên )

BHI=CKI (=90)

BI=IC

suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )

suy ra BH=CK ( hai cạnh tương ứng ) (điều phải chứng minh )

b) Xét tam giác AHI và AKI có :

AI là cạnh chung

góc HAI =góc KAI

góc H = góc K (=90)

suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )

suy ra góc AIH =AIK (hai góc tg ứng)

suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )

xét tam giác HIB và KIC có

HIB = KIC (chứng minh trên )

BHI=CKI (=90)

BI=IC

suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )

suy ra BH=CK ( hai cạnh tương ứng ) (đpcm)

                               ~Học tốt!~

Khách vãng lai đã xóa
....~Harath~....
Xem chi tiết
Hưng Lê
Xem chi tiết
Ngô Chi Lan
27 tháng 8 2020 lúc 16:22

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(Vt\ge0\left(\forall a,b,c\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)

Khách vãng lai đã xóa
Xyz OLM
27 tháng 8 2020 lúc 16:23

Ta có : a2 + b2 + c2 = ab + bc + ca

=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

= (a2 - 2ab + b2) +  (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

=> (a - b)2 + (b - c)2 + (c - a)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)

b) Ta có :  2(x2 + t2) + (y + t)(y - t) = 2x(y + t)

=> 2x2 + 2t2 + y2 - t2 = 2xy + 2t

=> 2x2 + t2 + y2 = 2xt + 2xy

=> 2x2 + t2 + y2 - 2xt - 2xy = 0

=> (x2 - 2xy + y2) + (x2 + t2 - 2xt)  = 0

=> (x - y)2 + (x - t)2 = 0

=> \(\hept{\begin{cases}x-y=0\\x-t=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=t\end{cases}}\Rightarrow x=y=t\left(\text{đpcm}\right)\)

c) Ta có a + b + c = 0 

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

=> a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> a2 + b2 + c2 = 0

=> a = b = c = 0

Khi đó A = (0 - 1)2003 + 02004 + (0 + 1)2005

= - 1 + 0 + 1 = 0

Vậy A = 0

Khách vãng lai đã xóa
Ngô Chi Lan
27 tháng 8 2020 lúc 16:24

b) Ta có: \(2\left(x^2+t^2\right)+\left(y+t\right)\left(y-t\right)=2x\left(y+t\right)\)

\(\Leftrightarrow2x^2+2t^2+y^2-t^2-2xy-2xt=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xt+t^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-t\right)^2=0\)

Tương tự phần a => \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-t\right)^2=0\end{cases}}\Rightarrow x=y=t\)

Khách vãng lai đã xóa
Đặng Ngọc Khánh Nhi
Xem chi tiết
Vũ Việt Dương
22 tháng 5 2020 lúc 20:55

Sao cho OA r sao nữa bạn?

Khách vãng lai đã xóa
Nguyễn Linh Chi
22 tháng 5 2020 lúc 21:19

Thêm đề: Sao cho OA < OA'.  Trên tia Oy lấy 2 điểm B và B' sao cho OB< OB'. Chứng minh rằng AB<A'B' . 

Giải: 

O A B A' B'

\(\Delta\)A'BO có: A'AB là góc ngoài của \(\Delta\)AOB 

=> ^A'AB > ^AOB  mà ^AOB là góc tù 

=> ^A'AB là góc tù 

=> A'B > AB (1)

\(\Delta\)A'BB' có: ^A'BB' là góc ngoài của \(\Delta\)A'BB' 

=> ^A'BB' > A'OB  mà ^A'OB là góc tù 

=> A'BB' là góc  tù 

=> A'B' > A'B (2) 

Từ (1) và (2) => A'B'> AB

Khách vãng lai đã xóa
Hà Ngốc
Xem chi tiết
hồ thị minh thư
Xem chi tiết
Dương Lam Hàng
11 tháng 8 2016 lúc 14:33

Đề sai: \(x^2=bc\) phải là \(a^2=bc\)

Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)

\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)

\(\Rightarrow a-ka=-b-kb\)

\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1) 

Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)

\(\Rightarrow c-kc=-a-ka\)

\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\)  ( 2)

Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)

                   \(\Rightarrow a^2=bc\left(đpcm\right)\)

Trần Trọng Quang
11 tháng 8 2016 lúc 14:34

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

\(k\)nhé !!!

Hoàng Minh Đức
11 tháng 8 2016 lúc 14:36

nếu \(a^2=bc\)thì :\(\frac{a}{b}=\frac{c}{a}=>\frac{a}{b}=\frac{c}{a}=\frac{c-a}{a-b}=\frac{c+a}{a+b}\)(theo tính chất dãy tỉ số bằng nhau)

theo tính chất của phân số ta có : \(\frac{a-b}{a+b}=\frac{c+a}{c-a}\)

=> ĐPCM