Cho biểu thức A = \(\left(\frac{x^2+1}{2x}-1\right).\left(\frac{1}{x-1}+\frac{1}{x+1}\right)\)
a) Tìm tập xác định của A
b) Rút gọn A
c) Tìm x để A = 0
cho biểu thức \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
a,Tìm điều kiện đối với x để biểu thức được xác định
b, Rút gọn
c, Với giá trị nào của x thì biểu thức được xác định
a) \(ĐKXĐ:x\ne1\)
b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)
\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)
\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(=\frac{1}{x-1}\)
c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .
P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.
Tại thấy câu c k khác j câu a !
Cho A=\(\left(\frac{2x}{x-1}+\frac{4x}{x^2-1}-\frac{2}{x+1}\right)\frac{x-1}{10}\)
a) Tìm giá trị của x để biểu thức A được xác định
b) Rút gọn biểu thức A
a, ĐKXĐ : x khác -1 và 1
b, A = 2x^2+4x+2/(x-1).(x+1) . (x-1)/10
= 2.(x^2+2x+1)/10.(x+1)
= (x+1)^2/5.(x+1)
= x+1/5
k mk nha
a, ĐKXĐ: \(x\ne\pm1\)
b, \(A=\left(\frac{2x}{x-1}+\frac{4x}{x^2-1}-\frac{2}{x+1}\right)\frac{x-1}{10}\)
\(A=\left(\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right)\frac{x-1}{10}\)
\(A=\frac{2x^2+2x+4x-2x+2}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{10}\)
\(A=\frac{2x^2+4x+2}{10\left(x+1\right)}\)
\(A=\frac{2\left(x+1\right)^2}{10\left(x+1\right)}\)
\(A=\frac{\left(x+1\right)}{5}\)
Cho biểu thức :
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a,Tìm x giá trị của A được xác định. Rút gọn biểu thức A
b, Tìm giá trị nguyên của x để A nhận giá rị nguyên
Cho biểu thức \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a,Tìm điều kiện của x để A xác định
b, Rút gọn biểu thức A
c, Tìm giá trị của x để A>0
\(a,x\ne2;x\ne-2;x\ne0\)
\(b,A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)
\(=\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(=\frac{1}{2-x}\)
\(c,\)Để A > 0 thi \(\frac{1}{2-x}>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\)
Cho biểu thức \(A=\left[\frac{2\left(x^2+1\right)}{x^3-1}-\frac{1}{x-1}\right]:\left[1-\left(\frac{x^2-2}{x^2+2}-1\right)\right]\)
a, tìm điều kiện xác định của A
b,rút gọn biểu thức A
điều kiện dễ mà,mẫu phải khác 0=>điều kiện pài này là x khác 1
Cho biểu thức: Q= \([\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right).\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}]\)
a, Tìm điều kiện xác định của biểu thức
b, Rút gọn Q
c, Chứng minh rằng với các giá trị của x thỏa mãn điều kiện xác định thì -5 <= Q <= 0
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
Cho biểu thức: \(P=\left(\frac{1}{x-1}+\frac{1}{x^2-x}\right):\frac{x+1}{\left(x-1\right)^2}\)
a, Tìm điều kiện xác định của x để biểu thức P xác định và rút gọn biểu thức P
b, Tìm x để \(P=\frac{2}{3}\)
Cho biểu thức: \(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)
a. Tìm điều kiện của x để giá trị của biểu thức A được xác định
b. Rút gọn A
c. Tìm giá trị của A tại x = 2
a) Điều kiện: \(x\ne0;x\ne1\)
b) \(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)
\(A=\left(\frac{x}{x-1}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)
\(A=\left(\frac{x^2}{\left(x-1\right).x}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)
\(A=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right).x}.\frac{x}{\left(x+1\right)^2}\)
\(A=\frac{x+1}{x}.\frac{x}{\left(x+1\right)^2}=\frac{1}{x+1}\)
c) Thay: \(x=2\)vào \(\frac{1}{x+1}\)ta có: \(A=\frac{1}{2+1}=\frac{1}{3}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
b)
\(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)
\(A=\left(\frac{x}{x-1}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{x^2+2x+1}\)
\(A=\left(\frac{x\cdot x}{x\left(x-1\right)}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{\left(x+1\right)^2}\)
\(A=\frac{x^2-1}{x\left(x-1\right)}\cdot\frac{x}{\left(x+1\right)^2}=\frac{\left(x^2-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{\left(x+1\right)\left(x-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{1}{x+1}\)
c) \(A=\frac{1}{x+1}=\frac{1}{2+1}=\frac{1}{3}\)
Vậy \(A=\frac{1}{3}\)
\(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right)\div\frac{x^2+2x+1}{x}\)
a) ĐKXĐ : x ≠ 0 ; x ≠ ±1
b) \(A=\left(\frac{x}{x-1}-\frac{1}{x\left(x-1\right)}\right)\div\frac{\left(x+1\right)^2}{x}\)
\(=\left(\frac{x^2}{x\left(x-1\right)}-1\right)\times\frac{x}{\left(x+1\right)^2}\)
\(=\frac{x^2-1}{x\left(x-1\right)}\times\frac{x}{\left(x+1\right)^2}\)
\(=\frac{\left(x-1\right)\left(x+1\right)\cdot x}{x\left(x-1\right)\cdot\left(x+1\right)^2}\)
\(=\frac{1}{x+1}\)
c) Tại x = 2 (tmđk) => Giá trị biểu thức A = 1/3
1.CHO BIỂU THỨC A=\(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a. Tìm x để giá trị của A được xác định. Rút gọn biểu thức A
b. Tìm giá trị nguyến của x để A nhận giá trị nguyên
2. Giaỉ các phương trình sau:
a. \(x\left(x+2\right)\left(x^2+2x+2\right)+1=0\)
b. \(y^2+4^x+2y-2^{x+1}+2=0\)
c. \(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
\(\left(\frac{x}{x^3-4x}^2+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\))
a, tìm điều kiện của x để A xác định
b, rút gọn biểu thức A
c, tìm giá trị của x để A>0