a,(2x+1).\(\left(x-\frac{1}{7}\right)=0\)
b,\(7^{2x}+7^{2x+2}=2450\)
Bài 1:Giải phương trình
a)\(10x^2-5x\left(2x+3\right)=15\)
b)\(3x-7-\left(3-4x\right)\left(2x+1\right)=4x\left(2x-7\right)\)
c)\(\left(4x-5\right)^2-\left(7-2x\right)=4\left(2x-4\right)^2+6x\)
Bài 2:Giải phương trình
a)\(\frac{3\left(x-1\right)}{2}+4=\frac{2x}{3}+\frac{4-5x}{6}\)
b)\(\frac{4-x}{7}-\frac{1}{7}\left(\frac{7+3x}{9}+\frac{5-2x}{2}\right)=4-\frac{4x}{3}\)
c)\(\frac{2}{9}\left(2x-5\right)-\frac{5}{3}\left[\left(x-2\right)-\frac{7}{12}\right]=\frac{3}{4}\left(x-3\right)\)
Bài 3:Giải phương trình
a)\(\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\)
b)\(2x\left(x-3\right)+5\left(x-3\right)=0\)
c)\(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
Bài 4:Tìm m để phương trình sau có nghiệm bằng 7:\(\left(2m-5\right)x-2m^2+8=43\)
Bài 5:Giải phương trình
a)\(\left(2x-1\right)^2-\left(2x+1\right)^2=0\)
b)\(\frac{1}{27}\left(x-3\right)^3-\frac{1}{125}\left(x-5\right)^3=0\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Bài 4 xem lại đề nhé bác
\(0.45-|1.3-x|=0\)
\(|3x-5|-\frac{1}{7}=\frac{1}{3}\)
\(|x+\frac{3}{4}|+5=-2\)
\(\frac{-12}{x}=\frac{25}{-50}\)
\((2x+1).\left(x+\frac{1}{7}\right)=0\)
\(7^{2x}+7^{2x+2}=2450\)
làm hộ làm hộ :33
a)\(0,45-\left|1,3-x\right|=0\)
\(\Leftrightarrow\left|1,3-x\right|=0,45-0\)
\(\Leftrightarrow\hept{\begin{cases}1,3-x=0,45\\1,3-x=-0,45\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1,3-0,45\\x=1,3+0,45\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0,85\\x=1,75\end{cases}}\)
Vậy x = 0,85 ; x = 1,75
b) \(\left|3x-5\right|-\frac{1}{7}=\frac{1}{3}\)
\(\Leftrightarrow\left|3x-5\right|=\frac{1}{3}+\frac{1}{7}\)
\(\Leftrightarrow\left|3x-5\right|=\frac{10}{21}\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=\frac{10}{21}\\3x-5=-\frac{10}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3x=\frac{10}{21}+5\\3x=-\frac{10}{21}+5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3x=\frac{115}{21}\\3x=\frac{95}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{115}{63}\\x=\frac{95}{63}\end{cases}}\)
Vậy x = .........................
tìm x
a) \(\frac{7^{x+2}+7^{x+1}7^x}{57}=\frac{5^{2x}5^{2x+1}5^{2x+3}}{131}\)
b) \(\left(2x+3\right)^2+\left(3x-2\right)^4=0\)
Tìm x:
a. \(\frac{x-2}{2}\)=\(\frac{-4}{\left(x-2\right)^2}\)
b. \(7^{2x}\)+ \(7^{2x+2}\)= 2450
a) Ta có \(\frac{x-2}{2}=\frac{-4}{\left(x-2\right)^2}\)
=> (x - 2)3 = -8
=> x - 2 = -2
=> x = 0
Vậy x = 0
b) Ta có 72x + 72x + 2 = 2450
=> 72x(1 + 72) = 2450
=> (72)x.50 = 2450
=> 49x = 49
=> x = 1
Vậy x = 1
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
tim x
a)\(2x\left(x-\frac{1}{7}\right)=0\)
b)\(\left(x-9\right).\left(x+\frac{3}{5}\right)=0\)
c)\(\left(\frac{-4}{7}-2x\right)\left(x-\frac{5}{4}\right)=0\)
a) \(2x\left(x-\frac{1}{7}\right)=0\)
\(x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow2x-2.\frac{1}{7}=0\)
\(2x-\frac{2}{7}=0\)
=> \(2x=\frac{2}{7}\)
=> x=\(\frac{1}{7}\)
b) (x-9)(\(x+\frac{3}{5}\))=0
\(\Rightarrow\orbr{\begin{cases}x-9=0\\x+\frac{3}{5}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-3}{5}\end{cases}}\)
Vậy x=0 hoặc x=-3/5
c) \(\left(\frac{-4}{7}-2x\right)\left(x-\frac{5}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{-4}{7}-2x=0\\x-\frac{5}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{7}\\x=\frac{5}{4}\end{cases}}\)
Vậy x=-2/7 hoặc x=5/4
a, => x.(x-1/7) = 0:2 = 0
=> x=0 hoặc x-1/7=0
=> x=0 hoặc x=1/7
Vậy x thuộc {0;1/7}
b, => x-9=0 hoặc x+3/5=0
=> x=9 hoặc x=-3/5
Vậy x thuộc {-3/5;9}
c, => -4/7-2x=0 hoặc x-5/4=0
=> x=-2/7 hoặc x=5/4
Vậy x thuộc {-2/7;5/4}
Tk mk nha
Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:
\(a,\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(b,\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
1) Giải các pt sau:
a) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
b) \(\frac{3x-2}{6}-5=\frac{3-2\left(x+7\right)}{4}\)
c) \(\frac{x+8}{6}-\frac{2x-5}{5}=\frac{x-1}{3}-x+7\)
d) \(\frac{7x}{8}-5\left(x-9\right)=\frac{2x+1,5}{6}\)
e) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
f) \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)
⇔ 3(x - 3) = 90 - 5(1 - 2x)
⇔ 3x - 9 = 90 - 5 + 10x
⇔ 3x - 10x = 90 - 5 + 9
⇔ -7x = 94
⇔ x = \(\frac{-94}{7}\)
S = { \(\frac{-94}{7}\) }
b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)
⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)
⇔ 6x - 4 - 60 = 9 - 6x - 42
⇔ 6x + 6x = 9 - 42 + 60 + 4
⇔ 12x = 31
⇔ x = \(\frac{31}{12}\)
S = { \(\frac{31}{12}\) }
c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7
⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210
⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210
⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40
⇔ 13x = 150
⇔ x = \(\frac{150}{13}\)
S = { \(\frac{150}{13}\) }
d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)
⇔ 21x - 120(x - 9) = 4(2x + 1,5)
⇔ 21x - 120x + 1080 = 8x + 6
⇔ 21x - 120x - 8x = 6 - 1080
⇔ -107x = -1074
⇔ x = \(\frac{1074}{107}\)
S = { \(\frac{1074}{107}\) }
e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5
⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840
⇔ 140x -140+56 -294x+42= 96x+48 -840
⇔ 140x -294x -96x = 48 -840 -42 -56+140
⇔ -250x = -750
⇔ x = 3
S = { 3 }
f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)
⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x
⇔ 4x+4+18x+9 = 4x+6x+6+7+12x
⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4
⇔ 0x = 0
S = R
Chúc bạn học tốt !
Đề bài: Tìm x, y :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Cách 1: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
Rồi sau đó tính ra đc y = 3.
Cách 2 : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)-\left(2x+3y-1\right)}{5+7}=\frac{0}{12}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{2x+1}{5}=0\\\frac{3y-2}{7}=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=-1\\3y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{3}\end{cases}}}\)
Lúc đầu thì mình làm theo cách 1, rồi mấy đứa khác nó làm theo cách 2. Mình thấy lạ vì bài này từng làm nhiều rồi mà bây giờ mới thấy cách khác. Cô bảo cả 2 cách đều đúng nhưng đáp số lại khác nhau.
Ai tìm ra chỗ sai trong bài này giúp mình với !
cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại
bạn làm theo cách một chúng ta dc:
\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng đúng v~
Khi 2x+3y-1=0 thì nó thành cách 2 đấy
Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.
v~ thiệt