Tìm số tự nhiên n để \(n^{2018}+n^{2017}+1\) là số chính phương
Lớp 8+9 : Tìm n là số tự nhiên để 2n+2017 và n+2019 là 2 số chính phương.
Ta có :
2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+2019 chia ch 4 dư 3
mà số chính phương chia cho 4 dư 0,1
=> không tồn tại n
2n + 2017 là số chính phương lẻ
=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)
=> 2n chia hết cho 8 => n chia hết cho 4
=> n + 2019 chia 4 dư 3
Mà scp chia 4 dư 0 hoặc 1
=> n + 2019 ko là scp
Vậy ko tồn tại STN n thoả mãn
Đặt \(\hept{\begin{cases}2n+2017=a^2\\n+2019=b^2\end{cases}\left(a,b\inℕ^∗\right)}\)
Dễ thấy : \(a^2\) là số chính phương lẻ, mà số chính phương lẻ chia 8 luôn dư 1. ( Điều này sẽ được chứng minh ở cuối bài làm ).
\(\Rightarrow2n+2017\equiv1\left(mod8\right)\)
\(\Rightarrow2n⋮8\) \(\Rightarrow n⋮4\)
\(\Rightarrow n+2019:4\) dư 3 hay \(\Rightarrow b^2:4\) dư 3
Lại có : một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1. ( Điều này sẽ được chứng minh ở cuối bài làm )
\(\Rightarrow n+2019\) không phải là số chính phương.
Do đó không tồn tại số tự nhiên n thỏa mãn đề.
*) Chứng minh bài toán phụ :
+) Số chính phương lẻ chia 8 dư 1 :
Ta có : \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\) chia 8 dư 1.
+) Một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1.
Ta có : \(\left(2k\right)^2=4k^2⋮4\) nên khi chia 4 có số dư là 0.
\(\left(2k+1\right)^2=4k\left(k+1\right)+1\) chia 4 dư 1.
Bài 4
Tìm số chính phương có bốn chữ số sao cho 3 chữ số số cuối giống nhau
Tìm số tự nhiên có 2 chữ số sao cho số đó nhân với 234 tạo thành một số chính phương
Tìm số tự nhiên n để n^2+1990 tạo thành số chính phương
Tìm số tự nhiên để n^2+2018 tạo thành số chính phương
Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)
A = 2018 + ( 2k+ 1+ 1)2
A = 2018 + (2k+2)2
A = 2018 + 4.( k+1)2 ⇒ A ⋮ 2 Nếu A là số chính phương
⇒ A ⋮ 4 ( tính chất 1 số chính phương )
⇒ 2018 ⋮ 4 ( vô lý)
Nếu n là số chẵn n =2k ( k \(\in\) N)
A = 2018 + ( 2k + 1)2;
2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)
A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.
Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương
Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) = a + n - a +n = 2n ( chia hết cho 2 )
\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ
Vậy ta kết luận: 2018 + n^2 không là số chính phương
Xin lỗi về phần giải trước do nhầm đề bài nên nó không đúng đâu nha
Tìm số tự nhiên n để 2n+2017 và n+2019 đều là số chính phương \(\)
Bài 1
tìm số tự nhiên n để n + 18 và n - 41 đều là số chính phương
Bài 2
có hay không n2 + 2018 là số chính phương với n\(\inℕ\)
Các bạn hãy trình bày đủ nhé
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
CMR A và B là số chính phương
A = 20172 + 20182 + 20172 . 20182
B = ( n+1 )( n+2 )( n+3) + 1
Biết n là số tự nhiên.
Giúp mình với mình chiều là mình đi học rồi!!! <3
cmr 2018^4n+2019^4n+2020^4n ko phải là số chính phương với mọi số nguyên n
tìm số nguyên n sao cho 1955+n và 2014+n là số chính phương
tìm số tự nhiên n sao cho 2^n +9 là số chính phương
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương