2*x^2+0.82=1
7-√x=0
Tìm x biết :
a) 7 - \(\sqrt{x}\)= 0
b) 4\(^{x^2}\)- 1 = 0
c)2 \(^{x^2}\)+ 0.82 = 1
\(a)7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7-0\)
\(\Rightarrow\sqrt{x}=7\)
Vậy \(x=7\)
\(b)4^{x^2}-1=0\)
\(\Rightarrow4^{x^2}=0+1\)
\(\Rightarrow4^{x^2}=1\)
\(\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow x=\pm\sqrt{\dfrac{1}{4}}=\pm\dfrac{1}{2}\)
Vậy ..................
\(c)2^{x^2}+0,82=1\)
\(\Rightarrow2^{x^2}+0=1\)
\(\Rightarrow2^{x^2}=1\)
\(\Rightarrow x^2=\dfrac{1}{2}\)
\(\Rightarrow x=\pm\sqrt{\dfrac{1}{2}}\)
Vậy ......................
Chúc bạn học tốt!
\(4x^2-1=0\)
\(2x^2_{ }+0.82=1\)
\(\left(3x-\dfrac{1}{4}\right).\left(x+\dfrac{1}{2}\right)=0\)
*) \(4x^2-1=0\)
\(\Rightarrow4x^2=1\Rightarrow x^2=\dfrac{1}{4}\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
*) \(2x^2+0,82=1\)
\(\Rightarrow2x^2=1-0,82=\dfrac{9}{50}\)
\(\Rightarrow x^2=\dfrac{9}{100}\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{10}\\x=-\dfrac{3}{10}\end{matrix}\right.\)
*) \(\left(3x-\dfrac{1}{4}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-\dfrac{1}{4}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{12}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Giải:
a) \(4x^2-1=0\)
\(\Leftrightarrow\left(2x\right)^2-1^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
b) \(2x^2+0,82=1\)
\(\Leftrightarrow2x^2=0,18\)
\(\Leftrightarrow x^2=0,09\)
\(\Leftrightarrow x=\pm0,3\)
Vậy ...
c) \(\left(3x-\dfrac{1}{4}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{1}{4}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{12}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt!
\(2x^2+0.82=1\)
\(4x^2-1=0\)
\(\left(3x-\dfrac{1}{4}\right).\left(x+\dfrac{1}{2}\right)=0\)
Tìm số chưa biết
\(a.\)
\(2x^2+0.82=1\)
\(\Rightarrow2x^2+0=1\)
\(\Rightarrow2x^2=1\)
\(\Rightarrow x^2=\dfrac{1}{2}\)
\(\Rightarrow x=\pm\sqrt{\dfrac{1}{2}}\)
\(b.\)
\(4x^2-1=0\)
\(4x^2=1\)
\(\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow x=\pm\sqrt{\dfrac{1}{4}}=\pm\dfrac{1}{2}\)
\(c.\)
\(\left(3x-\dfrac{1}{4}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-\dfrac{1}{4}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=\dfrac{1}{4}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{12}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a,| x+13/7 | + | y+2009/2008 | + | z-2007 |=0
b,| x-1/2 | + | y+3/2 | + | z-5/2 | \(\le\)0
c,| x+11/17 | + | x+2/17 | + | x+4/17 | =42
b2 tìm x
a)x^2-4x-5=0
b)5x^2-9x-2=0
c)(x^2+1)-5(x^2+1)+6=0
d)(x^2+6x)-2(x+3)^2-17=0
Lời giải:
a. $x^2-4x-5=0$
$\Leftrightarrow (x+1)(x-5)=0$
$\Leftrightarrow x+1=0$ hoặc $x-5=0$
$\Leftrightarrow x=-1$ hoặc $x=5$
b.
$5x^2-9x-2=0$
$\Leftrightarrow (x-2)(5x+1)=0$
$\Leftrightarrow x-2=0$ hoặc $5x+1=0$
$\Leftrightarrow x=2$ hoặc $x=\frac{-1}{5}$
c.
$(x^2+1)-5(x^2+1)+6=0$
$\Leftrightarrow a^2-5a+6=0$ (đặt $x^2+1=a$)
$\Leftrightarrow (a-2)(a-3)=0$
$\Leftrightarrow a-2=0$ hoặc $a-3=0$
$\Leftrightarrow x^2-1=0$ hoặc $x^2-2=0$
$\Leftrightarrow (x-1)(x+1)=0$ hoặc $(x-\sqrt{2})(x+\sqrt{2})=0$
$\Leftrightarrow x\in\left\{\pm 1; \pm \sqrt{2}\right\}$
d.
$(x^2+6x)-2(x+3)^2-17=0$
$\Leftrightarrow (x^2+6x+9)-2(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2-2(x+3)^2-26=0$
$\Leftrightarrow -(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2=-26<0$ (vô lý)
Do đó không tồn tại $x$ thỏa mãn.
a. ( x - 1200 )^2 + ( x + 2015 )^ 4 = 0
b. / 17 - x / . / y - 18 / = 0
c. / 17 - x / + / 17 - y / = 0
chứng minh rằng với mọi x ϵ R
x^2-8x+17>0
x^2+4x+5>0
x^2-x+1>0
-x^2-4x-5<0
-x^2-3x-4<0
-x^2+10x-27<0
a 9x2-18x=0
b x(x-2)+5(2+x)=0
c 3x2-147=0
d 4x2-12x=0
e 320-5x2=0
f 2x(x-17)+(17-x)=0
\(2x\left(x-17\right)+\left(17-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-17\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=17\end{cases}}\)
\(9x^2-18x=0\)
\(\Leftrightarrow9x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) \(x\left(x-2\right)+5\left(2+x\right)=0\)
\(\Leftrightarrow x^2-2x+10+5x=0\)
\(\Leftrightarrow x^2+3x+10=0\)
Dễ thấy phương trình vô nghiệm do vế trái luôn dương
(2x-4)(x=22)=0
(x-17)(x^2-16)=0
(x^2+3)(x+8)=0
a)
(2x-4)(x-22)=0
<=>2x-4=0 hoặc x-22=0
<=>x=2 hoặc x=22
b
(x-17)(x^2-16)=0
<=>x-17 =0 hoặc x^2-16=0
<=>x=17 hoặc x=4 hoặc x=-4
c
(x^2+3)(x+8)=0
Vì x^2+3>0
=>x+8=0
<=>x=-8