Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ミ꧁༺༒༻꧂彡
Xem chi tiết
Akai Haruma
15 tháng 1 2023 lúc 20:23

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>

Nguyễn Anh Thiện
Xem chi tiết
QuocDat
15 tháng 6 2017 lúc 18:35

c) (x+1) + (x+2) + ... + (x+5) = 90

=> 5x + ( 1 + 2 + ... + 5 ) = 90

5x + 15 = 90

5x = 90 - 15

5x = 75

x = 75 : 5

x  = 15

d) (x+1) + (x+2) + .... + (x+100) = 20150

=> 100x + ( 1+2+...+100 ) = 20150

100x + 5050 = 20150

100x = 20150 - 5050

100x = 15100

x = 15100 : 100

x = 151

l҉o҉n҉g҉ d҉z҉
15 tháng 6 2017 lúc 18:35

Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90

<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90

<=> 5x + 15 = 90

=> 5x = 75

=> x = 15 

nghia
15 tháng 6 2017 lúc 18:56

c)   \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+\left(x+5\right)=90\)

 \(\Leftrightarrow x+1+x+2+x+3+x+4+x+5=90\)

\(\Leftrightarrow5x+\left(1+2+3+4+5\right)=90\)

\(\Leftrightarrow5x+15=90\)

\(\Leftrightarrow5x=75\)

\(\Leftrightarrow x=15\)

d)    \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+......+\left(x+99\right)+\left(x+100\right)=20150\)

\(\Leftrightarrow x+1+x+2+x+3+......+x+99+x+100=20150\)

\(\Leftrightarrow100x+\left(1+2+3+.....+99+100\right)=20150\)

\(\Leftrightarrow100x+5050=20150\)

\(\Leftrightarrow100x=15100\)

\(\Leftrightarrow x=151\)

Bình nước
Xem chi tiết
Nguyen My Van
20 tháng 5 2022 lúc 6:25

Ta có: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)

\(\dfrac{\left[\left(x+1\right)+\left(x+99\right)\right].50}{2}=0\)

\(\left(x+50\right).50=0\)

\(x+50=0\)

\(x=-50\)

Chuu
20 tháng 5 2022 lúc 7:23

\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)

Có tất cả số hạng là

\(\left(99-1\right):2+1=50số\)

Ta có: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)

hay: \(\left(x+50\right).50=0\)

\(x+50=0\)

\(=>x=-50\)

Trần Cao Vỹ Lượng
Xem chi tiết
Nguyễn Thị Quỳnh Tiên
7 tháng 5 2018 lúc 9:57

\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)

\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)

\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)

\(\left(x\cdot100\right)+101\cdot50=5750\)

\(\left(x\cdot100\right)+5050=5750\)

\(x\cdot100=5750-5050\)

\(x\cdot100=700\)

\(x=700\div100\)

\(x=7\)

nguyen thi khanh huyen
7 tháng 5 2018 lúc 9:57

Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750

<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750

<=> 100x+5050=5750

=>100x=5750-5050

=>100x=700

=>x=700:100

=>x=7

Vậy x=7

 hoặc mở câu hỏi tương tự tham khảo.

Trần Cao Vỹ Lượng
7 tháng 5 2018 lúc 10:07

thank you

Ling ling 2k7
Xem chi tiết
Akai Haruma
12 tháng 5 2021 lúc 1:04

Lời giải:

Đặt biểu thức trên là $A$ thì:

\(A=\frac{1}{x+1}:\frac{x^2+3x+2-2}{(x-1)(x+1)(x+2)}=\frac{1}{x+1}:\frac{x(x+3)}{(x-1)(x+1)(x+2)}\)

\(=\frac{1}{x+1}.\frac{(x-1)(x+1)(x+2)}{x(x+3)}=\frac{(x-1)(x+2)}{x(x+3)}\)

Ngoc An Pham
Xem chi tiết
Lê Jiabao
9 tháng 11 2017 lúc 18:41

        \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+.....+\frac{1}{\left(x+99\right)\left(x+100\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+.....+\frac{1}{x+99}-\frac{1}{x+100}\)

\(=\frac{1}{x}-\frac{1}{x+100}\)

bao than đen
9 tháng 11 2017 lúc 19:20

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{1}{x}-\frac{1}{x+100}=\frac{x+100-x}{x\left(x+100\right)}=\frac{100}{x\left(x+100\right)}\)

super hacker pro
Xem chi tiết
Phạm Nguyễn Hồng Anh
20 tháng 3 2020 lúc 21:42

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

Khách vãng lai đã xóa
dcv_new
20 tháng 4 2020 lúc 19:15

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

Khách vãng lai đã xóa
dcv_new
23 tháng 4 2020 lúc 10:19

Đặt :\(\left(xy\right)^2+2\left(yz\right)^4+...+100\left(zx\right)^{100}=A\)

Ta thấy các số mũ đều chẵn 

Nên \(A\ge0\left(1\right)\)

Đặt : \(-\left[\left(x+y+z\right)+2\left(yz+zx+xy\right)+...+99\left(x+y+z\right)\right]=B\)

Vì có dấu âm ở trước VT

Nên \(B\le0\left(2\right)\)

Từ 1 và 2 <=> \(A=B=0\)

\(< =>x=y=z=0\)

Khách vãng lai đã xóa
ttt
Xem chi tiết
Kiyotaka Ayanokoji
29 tháng 7 2020 lúc 8:55

Trả lời:

\(B=\left(x-3\right).\left(x+3\right).\left(x^2+9\right)-\left(x^2+2\right).\left(x^2-2\right)\)

\(B=\left(x^2-9\right).\left(x^2+9\right)-\left(x^4-4\right)\)

\(B=\left(x^4-81\right)-\left(x^4-4\right)\)

\(B=x^4-81-x^4+4\)

\(B=-77\)

Khách vãng lai đã xóa
Nguyễn Minh Huy
29 tháng 7 2020 lúc 9:01

bài nayfd dễ

Khách vãng lai đã xóa
ttt
29 tháng 7 2020 lúc 9:04

@huynip123, dễ thì a làm hộ e đi !

Khách vãng lai đã xóa
Lê Thị Vân Anh
Xem chi tiết
Otaku Taki-kun
24 tháng 3 2017 lúc 22:37

Ta có:

P(x)=x2+(x+2)2+(x+3)2+...+(x+98)2−[(x+1)2+(x+3)2+...+(x+99)2]

=[x2-(x+1)2]+[(x+2)2-(x+3)2]+[(x+3)2-(x+4)2]+...+[(x+98)2-(x+99)2]

=(x-x-1)(x+x+1)+(x+2-x-3)(x+2+x+3)+...+(x+98-x-99)(x+98+x+99)

=-(2x+1)-(2x+5)-....-(2x+197)

=(-2x-2x-...-2x)+(-1-5-...-197)

Vì đa thức trên có \(\dfrac{197-1}{4}+1=50\text{ số hạng => -2x có 50 hạng tử}\)

Nên ta có:

=(-2x*50)+\(\left(\dfrac{\left(-197-1\right)\cdot50}{2}\right)\)

=-100x-4950

Mà P(x)=ax+b =>{a=-100; b=-4950}

Vậy a-b= -100-(-4950)= 4850 (Hihi! Mình tự làm nên ko biết đúng hay ko?)