Làm hộ
\(\left(x+1\right)+\left(x+3\right)+...+\left(x+99\right)=5100\)
1. \(\left(1-x\right)^2+\left(3-y\right)^2+\left(y^2-x-z\right)^2=0\)
2. \(\left(x-y+z^2\right)+\left(y-2\right)^2+\left(z+3\right)^2=0\)
Làm hộ mình 2 câu này
Lời giải:
1. Ta thấy:
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$
$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$
2.
Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>
c)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+\left(x+5\right)=90\)
d)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+.....+\left(x+99\right)+\left(x+100\right)+=20150\)
c) (x+1) + (x+2) + ... + (x+5) = 90
=> 5x + ( 1 + 2 + ... + 5 ) = 90
5x + 15 = 90
5x = 90 - 15
5x = 75
x = 75 : 5
x = 15
d) (x+1) + (x+2) + .... + (x+100) = 20150
=> 100x + ( 1+2+...+100 ) = 20150
100x + 5050 = 20150
100x = 20150 - 5050
100x = 15100
x = 15100 : 100
x = 151
Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90
<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90
<=> 5x + 15 = 90
=> 5x = 75
=> x = 15
c) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+\left(x+5\right)=90\)
\(\Leftrightarrow x+1+x+2+x+3+x+4+x+5=90\)
\(\Leftrightarrow5x+\left(1+2+3+4+5\right)=90\)
\(\Leftrightarrow5x+15=90\)
\(\Leftrightarrow5x=75\)
\(\Leftrightarrow x=15\)
d) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+......+\left(x+99\right)+\left(x+100\right)=20150\)
\(\Leftrightarrow x+1+x+2+x+3+......+x+99+x+100=20150\)
\(\Leftrightarrow100x+\left(1+2+3+.....+99+100\right)=20150\)
\(\Leftrightarrow100x+5050=20150\)
\(\Leftrightarrow100x=15100\)
\(\Leftrightarrow x=151\)
Tìm x biết: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Ta có: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\dfrac{\left[\left(x+1\right)+\left(x+99\right)\right].50}{2}=0\)
\(\left(x+50\right).50=0\)
\(x+50=0\)
\(x=-50\)
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Có tất cả số hạng là
\(\left(99-1\right):2+1=50số\)
Ta có: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
hay: \(\left(x+50\right).50=0\)
\(x+50=0\)
\(=>x=-50\)
tìm x \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+...+\left(x+99\right)+\left(x+100\right)=5750\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)
\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)
\(\left(x\cdot100\right)+101\cdot50=5750\)
\(\left(x\cdot100\right)+5050=5750\)
\(x\cdot100=5750-5050\)
\(x\cdot100=700\)
\(x=700\div100\)
\(x=7\)
Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750
<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750
<=> 100x+5050=5750
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
Vậy x=7
hoặc mở câu hỏi tương tự tham khảo.
\(\left[\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^2}\right]:\left[\dfrac{\left(x+2\right)\left(x+1\right)-2}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}\right]\)
Tính tiếp hộ mình với
Lời giải:
Đặt biểu thức trên là $A$ thì:
\(A=\frac{1}{x+1}:\frac{x^2+3x+2-2}{(x-1)(x+1)(x+2)}=\frac{1}{x+1}:\frac{x(x+3)}{(x-1)(x+1)(x+2)}\)
\(=\frac{1}{x+1}.\frac{(x-1)(x+1)(x+2)}{x(x+3)}=\frac{(x-1)(x+2)}{x(x+3)}\)
Thực hiện phép trừ sau
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+.....+\frac{1}{\left(x+99\right)\left(x+100\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+.....+\frac{1}{x+99}-\frac{1}{x+100}\)
\(=\frac{1}{x}-\frac{1}{x+100}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{1}{x}-\frac{1}{x+100}=\frac{x+100-x}{x\left(x+100\right)}=\frac{100}{x\left(x+100\right)}\)
câu 1: giải hệ phương trình
\(\left(x+y\right)^2+\left(y+z\right)^4+....+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
\(\left(xy\right)^2+2\left(yz\right)^4+....+100\left(zx\right)^{100}=-[\left(x+y+z\right)+2\left(yz+zx+xy\right)+......+99\left(x+y+z\right)]\)\(\left(\frac{1}{x}+\frac{1}{y}\right)^2+\left(\frac{1}{y^2}+\frac{1}{z^2}\right)^2+...+\left(\frac{1}{x^{99}}+\frac{1}{z^{99}}\right)^2=-\frac{1}{\left(xy\right)^2+2\left(yz\right)^2+.....+99\left(zx\right)^2}\)
tìm x,y,z
Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:
ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\) nên phương trình 1 vô lý
tương tự chứng minh phương trinh 2 và 3 vô lý
vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)
thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm
\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)
Ta dễ dàng nhận thấy tất cả số mũ đều chẵn
\(=>A\ge0\)(1)
Đặt : \(B=-\left(y+z+x\right)\)
\(=>B\le0\)(2)
Từ 1 và 2 \(=>A\ge0\le B\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)
Do \(B=0< =>y+z+x=0\)(3)
\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)
Từ 3 và 4 \(=>x=y=z=0\)
Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}
Đặt :\(\left(xy\right)^2+2\left(yz\right)^4+...+100\left(zx\right)^{100}=A\)
Ta thấy các số mũ đều chẵn
Nên \(A\ge0\left(1\right)\)
Đặt : \(-\left[\left(x+y+z\right)+2\left(yz+zx+xy\right)+...+99\left(x+y+z\right)\right]=B\)
Vì có dấu âm ở trước VT
Nên \(B\le0\left(2\right)\)
Từ 1 và 2 <=> \(A=B=0\)
\(< =>x=y=z=0\)
Thu gọn:
\(B=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)-\left(x^2+2\right)\left(x^2-2\right)\)
\(T=\left(x-5\right)\left(x+2\right)+3.\left(x-2\right)\left(x+2\right)-\left(3x-\frac{1}{2}\right)^2+5x^2\)
\(Q=\left(x-2\right)^3+6\left(x-1\right)^2-\left(x+1\right)\left(x^2-x+1\right)\)
Làm đc cái nào thì làm, ko bắt m.n làm cả đâu ! Làm đc hết thì mk cảm ơn!
Trả lời:
\(B=\left(x-3\right).\left(x+3\right).\left(x^2+9\right)-\left(x^2+2\right).\left(x^2-2\right)\)
\(B=\left(x^2-9\right).\left(x^2+9\right)-\left(x^4-4\right)\)
\(B=\left(x^4-81\right)-\left(x^4-4\right)\)
\(B=x^4-81-x^4+4\)
\(B=-77\)
@huynip123, dễ thì a làm hộ e đi !
Thu gọn đa thức \(P\left(x\right)=x^2+\left(x+2\right)^2+\left(x+3\right)^2+...+\left(x+98\right)^2-\left[\left(x+1\right)^2+\left(x+3\right)^2+...+\left(x+99\right)^2\right]\)
đc đa thức P(x) = ax + b vậy a - b là
Ta có:
P(x)=x2+(x+2)2+(x+3)2+...+(x+98)2−[(x+1)2+(x+3)2+...+(x+99)2]
=[x2-(x+1)2]+[(x+2)2-(x+3)2]+[(x+3)2-(x+4)2]+...+[(x+98)2-(x+99)2]
=(x-x-1)(x+x+1)+(x+2-x-3)(x+2+x+3)+...+(x+98-x-99)(x+98+x+99)
=-(2x+1)-(2x+5)-....-(2x+197)
=(-2x-2x-...-2x)+(-1-5-...-197)
Vì đa thức trên có \(\dfrac{197-1}{4}+1=50\text{ số hạng => -2x có 50 hạng tử}\)
Nên ta có:
=(-2x*50)+\(\left(\dfrac{\left(-197-1\right)\cdot50}{2}\right)\)
=-100x-4950
Mà P(x)=ax+b =>{a=-100; b=-4950}
Vậy a-b= -100-(-4950)= 4850 (Hihi! Mình tự làm nên ko biết đúng hay ko?)