Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Ngọc Hà My
Xem chi tiết
Minh Nguyễn Hữu
25 tháng 1 2015 lúc 20:49

 ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1

Gọi ƯCLN(n,2n+3) là :d

suy ra:  n chia hết cho d và 2n+3 chia hết cho d

suy ra :    (2n+3) - 2n chia hết cho d

                 3 chia hết cho d 

  suy ra:  d thuộc Ư(3) =( 3,1)

 ta có: 2n +3 chia hết cho 3

            2n chia hết cho 3

           mà (n,3)=1 nên  n chia hết cho 3

vậy khi n=3k thì (n,2n+3) = 3    (k thuộc N) 

   suy ra : n ko bằng 3k thì (n,2n+3)=1

vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản 

   

Trịnh Thị Minh Ngọc
8 tháng 2 2015 lúc 12:33

a/ n rút gọn đi còn 1/2+3 bằng 1/5

b/rút gọn 3a hết còn 1/1 vậy bằng 1

nguyen thua tuan
20 tháng 7 2016 lúc 15:24

Tim số tự nhiên n để phân số (2n+3)/(4n+1) tối giản

Cao yến Chi
Xem chi tiết
Nguyễn Phương Uyên
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Khách vãng lai đã xóa
Nguyễn Thị Huyền Trang
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Khách vãng lai đã xóa
Cao yến Chi
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Khách vãng lai đã xóa
Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2023 lúc 12:23

Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)

\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau

Hay P tối giản

Sinh Nguyễn Thành
10 tháng 4 2023 lúc 21:39

loading...

Anh Thư Trần
Xem chi tiết
Nguyễn Thanh Hằng
29 tháng 1 2021 lúc 20:55

a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)

Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)

\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

Ta có :

+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)

+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)

Vậy...

b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)

Ta có : 

\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)

\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n 

Vậy...

Hà Anh Nguyễn
15 tháng 9 lúc 22:46

tm là thỏa mãn hay sao ý

 

Nguyễn Thanh Tú
Xem chi tiết
Nguyễn Thanh Tú
31 tháng 8 2021 lúc 22:47

A=5-2n/6n+1 nha mn

Khách vãng lai đã xóa
trần thị minh nguyệt
Xem chi tiết
zZz Phan Cả Phát zZz
9 tháng 3 2017 lúc 22:19

Theo bài ra , ta có :

\(\frac{6n-7}{n-1}=\frac{6n-6-1}{n-1}=\frac{6\left(n-1\right)-1}{n-1}=\frac{6\left(n-1\right)}{n-1}-\frac{1}{n-1}=6-\frac{1}{n-1}\)

Mà \(\frac{1}{n-1}\)là phân số tối giản 

\(\Rightarrow6-\frac{1}{n-1}\)là p/s tối giản 

\(\Rightarrow\frac{6n-7}{n-1}\)là phân số tối giản (ĐPCM)

dao tien dat
Xem chi tiết

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.

Khách vãng lai đã xóa
dao tien dat
Xem chi tiết