Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Huy
Xem chi tiết
Minh Anh
Xem chi tiết
Thắng Nguyễn
4 tháng 9 2016 lúc 21:14

Bạn có thể tham khảo cách này

Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{2}{b}=y\\\frac{3}{c}=z\end{cases}}\Rightarrow x+y+z=3\)

BĐT thành \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\left(1\right)\)

ta sẽ dùng Bđt Cói \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)

Tương tự rồi cộng lại

\(\left(1\right)\ge x+y+z-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Dấu = khi \(x=y=z=1\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

Thắng Nguyễn
4 tháng 9 2016 lúc 21:07

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{2}{b}\\z=\frac{3}{c}\end{cases}\Rightarrow}\hept{\begin{cases}x,y,z>0\\x+y+z=3\end{cases}}\)

Khi đó ta có BĐT cần chứng minh tương đương với:

\(P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Ta có: \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+xy^2+yz^2+zx^2}\)

Ta cũng có: \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)\left(x^2+y^2+z^2\right)\)

\(=x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x\)

\(\ge3\left(x^2y+y^2z+z^2x\right)\)

\(\Rightarrow x^2y+y^2z+z^2x\le x^2+y^2+z^2\)

Chứng minh tương tự ta có: \(xy^2+yz^2+zx^2\le x^2+y^2+z^2\)

\(\Rightarrow P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3}{2}\)

Dấu = khi \(x=y=z\)hay\(\hept{\begin{cases}a=1\\b=2\\b=3\end{cases}}\)

Thắng Nguyễn
4 tháng 9 2016 lúc 21:19

cách ở dưới thiếu c=3 nhé =))

asdqwe123
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Akai Haruma
27 tháng 1 2019 lúc 17:41

Lời giải:

Ta viết lại biểu thức vế trái:

\(\text{VT}=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\left(\frac{a}{c}+\frac{a}{b}\right)+\left(\frac{b}{c}+\frac{b}{a}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\)

\(=a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)\)

Áp dụng BĐT Svac-xơ: \(\frac{1}{b}+\frac{1}{c}\geq \frac{4}{b+c}; \frac{1}{c}+\frac{1}{a}\geq \frac{4}{c+a}; \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\)

Do đó:

\(\text{VT}\geq a.\frac{4}{b+c}+b.\frac{4}{c+a}+c.\frac{4}{a+b}=4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

asdqwe123
Xem chi tiết
asdqwe123
Xem chi tiết
asdqwe123
Xem chi tiết
Phan Hoàng Quốc Khánh
Xem chi tiết
Nguyễn Khang
21 tháng 11 2019 lúc 16:04

Bớt 6 ở hai vế BĐT cần chứng minh tương đương:

\(\frac{\left(8c-a-b\right)\left(a-b\right)^2+\left(a+b\right)\left(a+b-2c\right)^2}{4abc}\le\frac{\left(7a+7b-2c\right)\left(a-b\right)^2+\left(a+b+2c\right)\left(a+b-2c\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\Leftrightarrow\frac{1}{2}\left(a-b\right)^2\left[\frac{7a+7b-2c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}-\frac{8c-a-b}{2abc}\right]+\frac{1}{2}\left(a+b-2c\right)^2\left[\frac{a+b+2c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}-\frac{a+b}{2abc}\right]\ge0\)

Tới phần khó chừa lại cho bạn:V

Khách vãng lai đã xóa
Hưng
Xem chi tiết