Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Mai Phương
Xem chi tiết
Sakura kinomoto
Xem chi tiết
Son Nguyen Cong
Xem chi tiết
OH-YEAH^^
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 8:54

\(\widehat{D}=\dfrac{3}{2}\widehat{B}=\dfrac{3}{2}.60^0=90^0\)

\(\widehat{D}=\dfrac{4}{3}\widehat{C}\Rightarrow\widehat{C}=\dfrac{3}{4}\widehat{D}=\dfrac{3}{4}.90^0=67,5^0\)

\(\widehat{A}=360^0-\widehat{B}-\widehat{C}-\widehat{D}=360^0-60^0-90^0-67,5^0=142,5^0\)

Hoàng Mai Hương
Xem chi tiết
Hon ca su quan tam
8 tháng 4 2016 lúc 21:58

ngu nguoi

Hon ca su quan tam
8 tháng 4 2016 lúc 21:58

ngu nguoi

Đinh Phương Nga
8 tháng 4 2016 lúc 22:03

Hon ca su quan tam: quan tâm thế mà cũng đòi lấu nick là quan tâm

giỏi thì làm đừng ở đó mà phỉ báng người khác

Đồ Hèn TA KHINH!!!!!!!!!!!!!!

PIKACHU
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết
Thuốc Hồi Trinh
16 tháng 7 2023 lúc 17:15

a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.

Vì AB//CD, ta có góc ACD = góc BAD.

Vậy số đo góc A là 120 độ.

b) Gọi góc BCD là x độ.

Theo giả thiết, góc B phần góc D = 4/5, ta có:

góc B = (4/5) * góc D

= (4/5) * 60

= 48 độ.

Vì AB//CD, ta có góc BCD = góc BAD.

Vậy góc BAD = góc BCD = x độ.

Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.

Ta có: góc A + góc B + góc C + góc D = 360 độ.

Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:

120 + 48 + góc C + 60 = 360

góc C = 360 - 120 - 48 - 60 = 132 độ.

Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.

* Ib = bài 4

Mai Thành Đạt
Xem chi tiết
Thắng Nguyễn
6 tháng 1 2018 lúc 0:16

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

Thắng  Hoàng
5 tháng 1 2018 lúc 18:56

sorry nha!Mik ko bít làm.???

siêu xe lamboghini
Xem chi tiết