TÌm x thuộc Z để E=\(\frac{x}{\sqrt{x}-1}\)thuộc Z
Cho biểu thức E = \(\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\) ( với x lớn hơn hoặc bằng 0, x khác 1 )
a) Rút gọn E
b) Tìm giá trị của x để E > 1
c) Tìm giá trị nhỏ nhất của E với x >1
d) Tìm x thuộc Z để E thuộc Z
e) Tìm x để E = \(\frac{9}{2}\)
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\sqrt{x}-1>0\) vì tử của phân số luôn \(\ge0\forall x\ge0\)
\(\Rightarrow x>1\)
kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)
vậy \(x>1\) thì \(E>1\)
Bài 1:
Cho E = \(\frac{1}{x+\sqrt{x}}\)
Tìm x thuộc Z để E có giá trị nguyên.
Bài 2:
Cho F = \(\frac{3}{x+\sqrt{x}+1}\)
Tìm x thuộc Z để F có giá trị nguyên.
\(C=\left(1-\frac{1}{\sqrt{x}+2}\right):\left(\frac{4-x}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
a) Tìm x để C>0
b) Tìm x thuộc Z để C thuộc Z
Tìm x thuộc z để A=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)thuộc z
\(\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\in Z\Rightarrow\frac{2}{\sqrt{x}+1}\in Z\)
giả sử \(\sqrt{x}\)là số vô tỉ=>\(\sqrt{x}+1\)là số vô tỉ
=>\(\frac{2}{\sqrt{x}+1}\)là số vô tỉ(vô lí)
với \(\sqrt{x}\in Q\)=>\(\sqrt{x}\in Z\Rightarrow\sqrt{x}+1\in Z\)
mà \(\sqrt{x}+1\ge1\)
Vậy x=0;1 thì \(A\in Z\)
=>\(\sqrt{x}+1\in\left\{1;2\right\}\Rightarrow x\in\left\{0;1\right\}\)
Đặt \(\sqrt{x}=t\)
=> t \(\ge\) 0
\(\Rightarrow\)Để A thuộc Z thì:
\(\frac{t+3}{t+1}\in Z\)
\(=>\left(\frac{t+3}{t+1}-1\right)\in Z\)
\(\frac{2}{t+1}\in Z\)
=> \(2⋮\left(t+1\right)\Rightarrow\left(t+1\right)\inƯ\left(2\right)\)
\(\Rightarrow\left(t+1\right)\in\left\{2;-2;1;-1\right\}\)
=> \(t\in\left\{1;-3;0;-2\right\}\)
Vì \(t\ge0\)nên chỉ có t = 1; t = 0 là thoả mãn điều kiện của t
Vì \(t=\sqrt{x}\)nên :
\(x\in\left\{1;0\right\}\)
Vậy,\(x\in\left\{1;0\right\}\)
Tìm x thuộc z để B=\(\frac{3-2\sqrt{x}}{\sqrt{x}-1}\)thuộc z
bạn ơi câu trc của bạn mình cũng trả lời r đó
đkxd: x khác 1
Đặt \(\sqrt{x}=t\)=> t \(\ge0\); t khác 1
Khi đó ta có:
\(B=\frac{3-2t}{t-1}\)
Để B thuộc Z thì:
\(B+2=\frac{3-2t+2t-2}{t-1}\in Z\)
\(\Rightarrow\frac{1}{t-1}\in Z\)
\(\Rightarrow\left(t-1\right)\in\left\{1;-1\right\}\)
\(t\in\left\{2;0\right\}\)
Vì cả 2 giá trị của t đều thoả mãn t \(\ge\)0, t khác 1 nên ta có
\(x\in\left\{4;0\right\}\)
Cho M =\(\frac{\sqrt{x}+1}{\sqrt{x}+3}\). Tìm x thuộc Z để M thuộc Z
Cho P =\(\frac{\sqrt{x}+3}{\sqrt{x}-1}\), Tìm x thuộc Z để P thuộc Z
ĐKXĐ: \(x\ge0;\)\(x\ne1\)
\(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=1+\frac{4}{\sqrt{x}-1}\)
Để \(P\in Z\)thì: \(\frac{4}{\sqrt{x}-1}\in Z\)
hay \(\sqrt{x}-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
đến đây bạn lập bảng rồi tìm ra x nhé
N = \(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) Rút gọn
b) Tìm x để N < 0
c) Tìm giá trị lớn nhất của N
d) Tìm x thuộc z để N thuộc z
e) Tính N tại x = \(7-4\sqrt{3}\)
Cho \(A=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
a) Rút gọn A
b) Tìm x thuộc Z để A thuộc Z
c) Tìm x để A đạt GTNN