tìm giá trị lớn nhất, nhỏ nhất nếu có của biểu thức sau \(\frac{4x-9}{\left|x\right|}\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có) của biểu thức sau
H=\(\dfrac{1}{5-\left|x-3\right|}\)
mn ơi giúp mik với, mik cần gấp á, cảm ơn mn nhìuuu
1) Tìm giá trị nguyên của biến x để biểu thức
a, A=\(\frac{2}{6-x}\) có giá trị lớn nhất
b,B=\(\frac{8-x}{x-3}\) có giá trị nhỏ nhất
2)Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau
a,\(\left|x-2\right|+\left|x+3\right|\)
b,\(\left(2x^2+3\right)^2-4\)
c, \(4x^2-4x+3\)
Tìm giá trị lớn nhất và nhỏ nhất (nếu có) của biểu thức A = \(\frac{x}{\left(x+4\right)^2}\)
\(A=\frac{x}{\left(x+4\right)^2}\)
Đặt \(x+4=y\Leftrightarrow x=y-4\) \(\left(y\ne0\right)\)
\(A=\frac{y-4}{y^2}\)
\(A=\frac{y}{y^2}-\frac{4}{y^2}\)
\(-A=\left(\frac{2}{y}\right)^2-\frac{1}{y}\)
\(-A=\left[\left(\frac{2}{y}\right)^2-\frac{1}{y}+\left(\frac{1}{4}\right)^2\right]-\frac{1}{16}\)
\(-A=\left(\frac{2}{y}-\frac{1}{4}\right)^2-\frac{1}{16}\)
Do : \(\left(\frac{2}{y}-\frac{1}{4}\right)^2\ge0\forall y\in R\)
\(\Rightarrow-A\ge-\frac{1}{16}\)
\(\Leftrightarrow A\le\frac{1}{16}\)
Dấu " = " xảy ra khi :
\(\frac{2}{y}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{2}{y}=\frac{1}{4}\)
\(\Leftrightarrow y=8\)
Lại có : \(x=y-4\Rightarrow x=4\)
Vậy \(A_{Max}=\frac{1}{16}\Leftrightarrow x=4\)
Cho biểu thức \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
a/ Rút gọn biểu thức A
b/ Tìm giá trị lớn nhất - nhỏ nhất của A
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
a)tìm giá trị nhỏ nhất của biểu thức:
A= \(\left(2x+\frac{1}{3}\right)^4\)-1
b) Tìm giá trị lớn nhất của biểu thức :
B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
e cái gì là em bé à
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị lớn nhât, nhỏ nhất(nếu có) của các biểu thức sau:
\(A=\left(x-6\right)^2+3x^2\)
\(B=\frac{x}{\left(x+4\right)^2}\)