Những câu hỏi liên quan
Kiệt Nguyễn
Xem chi tiết
Phùng Minh Quân
2 tháng 8 2020 lúc 22:16

đổi ẩn 

\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)

\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)

dấuu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Tuấn Kiệt
Xem chi tiết
Tuấn Kiệt
30 tháng 11 2019 lúc 22:26

Nguyễn Việt Lâm anh làm bài này giúp em với ạ

Khách vãng lai đã xóa
Tuấn Kiệt
30 tháng 11 2019 lúc 22:27

Akai Haruma giúp em bài trên với ạ

Khách vãng lai đã xóa
Lan Trịnh Thị
3 tháng 12 2019 lúc 22:24

Akai Haruma cô giúp em với !!!

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
26 tháng 8 2020 lúc 20:24

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 8 2020 lúc 20:41

Đặt a=xc; b=cy (x;y >=1)

Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c

Khách vãng lai đã xóa
Cậu Bé Ngu Ngơ
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
Komorebi
Xem chi tiết
Khôi Bùi
23 tháng 3 2019 lúc 21:15

2 ) Ta có : \(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Do a ; b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\frac{a+b}{3}-1\le0\)

\(\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+\frac{8}{a}+\frac{2}{b}+2b-\left(a+b\right)\ge8+4-3=9\)

( áp dụng BĐT Cauchy cho a ; b dương )

Dấu " = " xảy ra \(\Leftrightarrow a=2;b=1\)

Nguyễn Việt Lâm
23 tháng 3 2019 lúc 21:27

Tìm min cho K, tìm max có lẽ Bunhia là ra thôi:

Đặt \(\left\{{}\begin{matrix}\sqrt{3a+1}=x\\\sqrt{3b+1}=y\\\sqrt{3x+1}=z\end{matrix}\right.\) \(\Rightarrow1\le x;y;z\le\sqrt{10}\)

\(x^2+y^2+z^2=3\left(a+b+c\right)+3=12\)

Bài toán trở thành cho \(x^2+y^2+z^2=12\), tìm min \(P=x+y+z\)

Ta có: \(\left(x-1\right)\left(x-\sqrt{10}\right)\le0\Rightarrow x^2-\left(\sqrt{10}+1\right)x+\sqrt{10}\le0\)

\(\left(y-1\right)\left(y-\sqrt{10}\right)=y^2-\left(\sqrt{10}+1\right)y+\sqrt{10}\le0\)

\(\left(z-1\right)\left(z-\sqrt{10}\right)=z^2-\left(\sqrt{10}+1\right)z+\sqrt{10}\le0\)

Cộng vế với vế:

\(x^2+y^2+z^2-\left(\sqrt{10}+1\right)\left(x+y+z\right)+3\sqrt{10}\le0\)

\(\Rightarrow x+y+z\ge\frac{x^2+y^2+z^2+3\sqrt{10}}{\sqrt{10}+1}=\frac{12+3\sqrt{10}}{\sqrt{10}+1}=2+\sqrt{10}\)

\(\Rightarrow P_{min}=2+\sqrt{10}\) khi \(\left(x;y;z\right)=\left(1;1;\sqrt{10}\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(3;0;0\right)\) và các hoán vị

 Mashiro Shiina
23 tháng 3 2019 lúc 20:58

haha

Vương 99
Xem chi tiết
Daddy12
7 tháng 1 2019 lúc 17:48

Ta có \(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\left(a,b,c>0\right)\)

\(\Leftrightarrow4a+4\sqrt{ab}+4\sqrt[3]{abc}=\frac{16}{3}.\)

\(\Leftrightarrow4a+2.2\sqrt{ab}+\sqrt[3]{64abc}=\frac{16}{3}.\)

\(\Leftrightarrow4a+2\sqrt{a.4b}+\sqrt[3]{a.4b.16c}=\frac{16}{3}.\)(1)

Áp dụng BDT Cauchy cho hai số dương \(a\)và \(4b\)ta được:\(2\sqrt{a.4b}\le a+4b\)(dấu bằng có \(\Leftrightarrow a=4b\))(2)

Áp dụng BDT Cauchy cho ba số dương \(a;4b\)và \(16c\)ta được:\(\sqrt[3]{a.4b.16c}\le\frac{1}{3}\left(a+4b+16c\right).\)(dấu bằng có \(\Leftrightarrow a=4b=16c\))(3)

Từ (1);(2) và (3) suy ra:

 \(\frac{16}{3}\le4a+a+4b+\frac{1}{3}\left(a+4b+16c\right).\)

\(\Leftrightarrow\frac{16}{3}\le5a+4b+\frac{1}{3}a+\frac{4}{3}b+\frac{16}{3}c.\)

\(\Leftrightarrow\frac{16}{3}\le\frac{16}{3}a+\frac{16}{3}b+\frac{16}{3}c.\)

\(\Leftrightarrow\frac{16}{3}\left(a+b+c\right)\ge\frac{16}{3}.\)

\(\Leftrightarrow a+b+c\ge1\)

\(\Rightarrow MinZ=1\)

\(\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}.\\a+b+c=1\\a=4b=16c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}\)

Vậy GTNN của \(Z\)là 1 khi và chỉ khi \(a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}.\)

P/S:Trong quá trình làm dù đã rất cố gắng song khó tránh khỏi sai sót;mong bạn lượng thứ.

Daddy12
7 tháng 1 2019 lúc 17:51

Đình chính:

\(MinZ=1\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\\a=4b=16c\\a+b+c=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}}\)

Daddy12
7 tháng 1 2019 lúc 18:35

Câu này hay đấy.Các quản lý nên cho vào mục câu hỏi hay.

OLM gặp lỗi hiển thị rồi.Làm mất công tôi đình chính lại

Hoàng Bình Minh
Xem chi tiết
Trần Đình Tuệ
Xem chi tiết
Phùng Minh Quân
31 tháng 7 2019 lúc 9:32

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)

\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)

Phùng Minh Quân
31 tháng 7 2019 lúc 9:33

à nhầm, \(a=b=c=\frac{4}{3}\) nhé