Cho ( a+b+c)*(a*b+b*c+c*a)=2017
a*b*c=2017
Tính P=(b^2*c+2017)*(c^2*a+2017)*(a^2*b+2017)
cho a,b,c khác 0 thỏa mãn a^2017 b^2017 c^2017=1; a^2(b c) b^2(c a) c^2(a b) 2abc =0 tính 1/a^2017 1/b^2017 1/c^2017
Cho a, b, c thỏa mãn abc = 2017. Tính giá trị biểu thức sau Q = 2017a ab + 2017a + 2017 + b bc + b + 2017 + c ac + 1 + c
A. Q = -1
B. Q = 0
C. Q = 2
D. Q = 1
Cho a.b.c=2017
Tính P=\(\frac{2017+a}{ab+2017a+2017}\)+\(\frac{b}{bc+b+2017}\)+\(\frac{c}{ac+c+1}\)
P=\(\frac{2017a}{ab+2017a+2017}\)+\(\frac{b}{bc+b+2017}\)+\(\frac{c}{ac+c+1}\)chứ bạn
Với abc=2017 ta có:
P=\(\frac{a^2bc}{ab+a^2bc+abc}\)+\(\frac{b}{bc +b+abc}\)+\(\frac{c}{ac+c+1}\)
P=\(\frac{ac}{ac+c+1}\)+\(\frac{1}{ac+c+1}\)+\(\frac{c}{ac+c+1}\)
P=1
LKKJHFJHFDTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTDJHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
dmnagdtyartdauytguyerwdfsrtduityrwxchwf
cho a ,b,c,d thỏa mãn a+b=c+d , a^2+b^2=c^2+d^2 cmr a^2017+b^2017=c^2017+d^2017
Cho a+b+c=6 và \(\text{a^2+b^2+c^2=12 Tính p=(a-1)^{2017}+(b-1)^{2017}+(c-1)^{2017}}\)
Cho b2 = a*c, c2 = b*d (với b, c, d khác 0), (b+c khác 0), (b2017 + c2017 khác d2017). Chứng minh rằng a2017 + b2017 - c2017 / b2017 + c2017 - d2017 = (a + b- c)2017 / (b + c -d)2017.
Cho a, b, c\(\ne\)0, thỏa mãn:
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-\frac{a^3+b^3+c^3}{abc}=2\)
Tính \(H=\left(\left(a+b\right)^{2017}-c^{2017}\right)\left(\left(b+c\right)^{2017}-a^{2017}\right)\left(\left(c+a\right)^{2017}-b^{2017}\right)\)
cho các số dương thỏa mãn (b+c)/a^2+(a+c)/b^2+(a+b)/c^2=2(1/a+1/b+1/c). tính gtbt: P= (a-b)^2017 + (b-c)^2017 + (c-a)^2017
Cho \(b^2=ac\) và \(c^2=bd\) ( với b,c,d ≠ 0 ; b+c ≠ d ; \(b^{2017}+c^{2017}\text{ ≠}d^{2017}\) )
CMR :
\(\dfrac{a^{2017}+b^{2017}+c^{2017}}{b^{2017}+c^{2017}-d^{2017}}=\dfrac{\left(a+b+c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)