Với những giá trị nào của x thì
\(\frac{2}{3}-\frac{7}{2}x\div\frac{x}{5}+1\frac{7}{11}\)
Với những giá trị nào của x thì:
a) A\(=\frac{\frac{2}{3}-\frac{7}{2}x}{\frac{x}{5}+1\frac{7}{11}}<0\)
b) lx-3l > 2
Với giá trị nào của x thì biểu thức \(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\) không lớn hơn bằng giá trị của biểu thức \(\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)
\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)
\(\Leftrightarrow\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7x-14-3x\left(x+1\right)}{21}\)
\(\Leftrightarrow3x-7-3x^2+6x\le7x-14-3x^2-3x\)
\(\Leftrightarrow9x-7\le4x-14\Leftrightarrow5x\le-7\Leftrightarrow x\le-\frac{7}{5}\)
vậy tập nghiệm của bft là S = { x | x =< -7/5 }
\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)
\(< =>\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7\left(x-2\right)}{21}-\frac{3x\left(x+1\right)}{21}\)
\(< =>3x-7-3x^2+6x\le7x-14-3x^2+3x\)
\(< =>-3x^2+3x+9x-7-10x+14\le0\)
\(< =>-x-7\le0\)
\(< =>x+7\ge0< =>x\ge-7\)
vậy với x >= -7 thì ....
với giá trị nào của biến thì giá trị của biểu thức sau bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
a)Giá trị x>0 thõa mãn
\(\frac{11}{14}+\left|\frac{2}{7}-x\right|-\frac{5}{2}=\frac{4}{3}\)
b)giá trị của a thõa mãn
\(\frac{a}{b}=\frac{-2.5}{4.5}\)và a+b=1,44
c)giá trị của b thõa mãn
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\)và b-a=36
d) giá trị x thõa mãn
\(2\div\frac{3}{5}=-1\frac{3}{4}\div\left(\frac{-9}{20}x\right)\)
e)giá trị biểu thức
\(2.5\times\left(-3x+1\right)^2-12\left|x\right|-9\)
tại x=-0,2
Cho đa thức : f(x)=x(x^19-x^5-x^2018) và g(x)= x^2019-x^2020+9+(x^4+x^2+2)
1)Tính k(x)=f(x)+g(x)
2)Tính giá trị của k(x) tại x bằng \(\left(2-\frac{5}{3}+\frac{7}{6}-\frac{9}{10}+\frac{11}{15}-\frac{13}{21}+\frac{15}{28}-\frac{17}{36}+\frac{19}{45}\right)\cdot\frac{5}{6}\)
3) CMR k(x) không nhận giá trị 2019 với mọi giá trị nguyên x
Cho biểu thức : A =\(\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right)\div\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)
a/ Rút gọn
b/ Tính giá trị của a khi x = \(7+4\sqrt{3}\)
c/ Với giá trị nào của x thì A đạt giá trị nhỏ nhất
Giúp mình với.
Tìm x, biết:
a)/\(\frac{3}{2}x+\frac{1}{2}\)/\(=\)/4x-1/(giá trị tuyệt đối của \(\frac{3}{2}\)nhân x cộng 12= giá trị tuyệt đối của 4 nhân x trừ 1)
b)/\(\frac{5}{4}x-\frac{7}{2}\)/\(-\)/\(\frac{5}{8}x+\frac{3}{5}\)/=0(giá trị tuyệt đối của 5/4 nhân x trừ cho 7/2- giá trị tuyệt đối của 5/8 nhân x + 3/5=0)
c) /\(\frac{7}{5}x+\frac{2}{3}\)/=/\(\frac{4}{3}x-\frac{1}{4}\)/(giá trị tuyệt đối của 7/5 nhân x + cho 2/3= giá trị tuyệt đối của 4/3 hân x trừ 1/4)
d) /\(\frac{7}{8}x+\frac{5}{6}\)/\(-\)/\(\frac{1}{2}x+5\)/=0(giá trị tuyệt đối của 7/8 nhân x + cho 5/6 trừ cho giá trị trị tuyệt đối của 1/2 nhân x + cho =0)
CÁC BẠN GIÚP MIK VỚI, MIK PHẢI NỘP GẤP, MONG CÁC BẠN HAY GIẢI TỪNG BƯỚC RA HI!!! RỒI MIK SẼ TICK CHO...
Tính giá trị các biểu thức sau một cách nhanh nhất:
a) 0.2 x 517 x 7 x 0.7 x 483 x 2
b) \(\frac{4}{9}+\frac{6}{11}+\frac{5}{9}+\frac{16}{11}+7\)
c) \(\frac{3}{5}+\frac{5}{1}+\frac{7}{13}+\frac{2}{5}+\frac{16}{11}+\frac{19}{13}\)
Câu 3:
Cho biểu thức: \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi /x/ =\(\frac{3}{4}\)
c)Với giá trị nào của x thì P=7
d) Tìm giá trị nguyên của x đẻ P có giá trị nguyên
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)
a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)
\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)
\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{-1}{x+2}\)
b) Khi \(\left|x\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)
c) Để P = 7
\(\Leftrightarrow-\frac{1}{x+2}=7\)
\(\Leftrightarrow7\left(x+2\right)=-1\)
\(\Leftrightarrow7x+14=-1\)
\(\Leftrightarrow7x=-15\)
\(\Leftrightarrow x=-\frac{15}{7}\)
Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)
d) Để \(P\inℤ\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)