\(\)\(\frac{x-1}{3}\)-\(\frac{ax-5x-a-1}{3a+3}\)
Giúp em câu này với ạ!!!!!!!!
a)\(\frac{x+2}{6}-\frac{8x+1}{3}=\frac{2-5x}{2}-6\)
b)11-(x+2)=3(x+1)
c)\(\frac{x+3}{x+1}+\frac{x+2}{x}=2\)
mn giài giúp em bài này với ạ . Em cảm ơn nhìu
\(a,\frac{x+2}{6}-\frac{8x+1}{3}=\frac{2-5x}{2}-6\)
\(\Leftrightarrow\frac{x+2}{6}-\frac{\left(8x+1\right)2}{6}=\frac{\left(2-5x\right)3}{6}-\frac{36}{6}\)
=> x + 2 - 16x - 2 = 6 - 15x - 36
<=> x - 16x + 15x = 6 -36 + 2 - 2
<=> 0x = -30
Phương trình vô ngiệm
b, 11 - ( x + 2) = 3(x + 1)
<=> 11 - x - 2= 3x + 3
<=> -x - 3x = 3 - 11 + 2
<=> -4x = -6
<=> x = \(\frac{3}{2}\)
C, tương tự a
c) ĐKXĐ: x \(\ne\)0 và x \(\ne\)-1
Ta có: \(\frac{x+3}{x+1}+\frac{x+2}{x}=2\)
=> \(x\left(x+3\right)+\left(x+1\right)\left(x+2\right)=2x\left(x+1\right)\)
<=> x2 + 3x + x2 + 3x + 2 = 2x2 + 2x
<=> 2x2 + 6x + 2 - 2x2 - 2x = 0
<=> 4x + 2 = 0
<=> 4x = -2
<=> x = -1/2 (tm)
Vậy S = {-1/2}
Câu 1 :Cho phương trình : \(\left(2x-3\right)^2=5\). Tính giá trị của biểu thức : A=\(\frac{2x^2}{x^4-3x^3-3x+1}\)
Câu 2: Cho phương trình :\(\frac{a+3}{x+1}-\frac{5-3a}{x-2}=\frac{ax+3}{x^2-x-2}\). Với giá trị nào của a thì phương trình có nghiệm dương không lớn hơn 1.
Câu 3 : Đa thức P(x) là đa thức bậc 4 và có hệ số cao nhất là 2 . biết P(1)=0 ; P(3)=0 ; P(5)=0 . háy tính giá trị của biểu thức : Q=P(-2)+7P(6)
:<< ai giúp với ạ
Biết \(a^3.b^3+b^3.c^3+c^3.a^3=3a^2b^2c^2\).
Tính giá trị của bt :
\(A=(\frac{a}{b}+1).(\frac{b}{c}+1)+(\frac{c}{a}+1)\)
Ae làm ơn giúp mk đi ạ mk ~ Mk sẽ k câu này và 2 câu khác nữa đó !!
Đặt \(ab=x;\)\(bc=y;\)\(ca=z\)
Khi đó: \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
<=> \(x^3+y^3+z^3=3xyz\)
<=> \(x^3+y^3+z^3-3xyz=0\)
<=> \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
Nếu: \(x+y+z=0\)thì: \(ab+bc+ca=0\)
\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\)
\(=\frac{\left(a+b\right)\left(b+c\right)}{bc}+\frac{c}{a}+1=\frac{ab+ac+bc+b^2}{bc}+\frac{c}{a}+1\)
\(=\frac{b}{c}+\frac{c}{a}+1=\frac{ab+c^2+ac}{ac}=\frac{c^2-bc}{ac}=\frac{c-b}{a}\)
Nếu: \(x^2+y^2+z^2-xy-yz-zx=0\)<=> \(x=y=z\)
<=> \(ab=bc=ca\)<=> \(a=b=c\)
\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)=2.2+2=6\)
p/s: trg hợp 1 mk lm đc đến có z thôi, bn tham khảo
Cho
\(A=\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+\frac{15^3}{28}-\frac{17^3}{36}+...+\frac{199^3}{4950}\)
So sánh A với 814.
Mọi người giúp em câu này với ạ! Em cảm ơn!
\(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\)
MỌI NGƯỜI GIẢI GẤP GIÚP EM CẦU NÀY VỚI Ạ
EM CẢM ƠN MỌI NGƯỜI!
(2/3×x-1/3)=2/3+1/3
(2/3×x-1/3)=3/3
2/3×x=3/3+1/3
2/3×x=4/3
x=4/3:3/2
x=4/3×2/3
x=8/9
Giải phương trình
\(\frac{1}{5x^2-x+3}+\frac{1}{5x^2+x+7}+\frac{1}{5x^2+3x+13}+\frac{1}{5x^2+5x+21}=\frac{4}{x^2+6x+5}\) với x>0
@@@ Giúp em với @@@
--- Em đag cần ạ ---
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^2+1\geq 4x\)
\(\Rightarrow \left\{\begin{matrix} 5x^2-x+3\geq x^2+3x+2\\ 5x^2+x+\geq x^2+5x+6\\ 5x^2+3x+13\geq x^2+7x+12\\ 5x^2+5x+21\geq x^2+9x+20\end{matrix}\right.\)
\(\text{VT}\leq \frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}+\frac{1}{(x+4)(x+5)}\)
\(\Leftrightarrow \text{VT}\leq \frac{(x+2)-(x+1)}{(x+1)(x+2)}+\frac{(x+3)-(x+2)}{(x+2)(x+3)}+\frac{(x+4)-(x+3)}{(x+3)(x+4)}+\frac{(x+5)-(x+4)}{(x+4)(x+5)}\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{x+1}-\frac{1}{x+5}\)
\(\Leftrightarrow \text{VT}\leq \frac{4}{x^2+6x+5}\)
Dấu "=" xảy ra khi $4x^2=1, x>0$ hay $x=\frac{1}{2}$
Vậy $x=\frac{1}{2}$ là nghiệm của PT.
Nguyễn Việt Lâm anh giúp em pt trên với ạ !!!
Akai Haruma giúp em bài này với ạ ''''
Cho a,b,c là các số thực dương thỏa mãn abc = 1
CMR: \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Mong cô Chi tick cho bn nào làm được câu này để giúp các bn có động lực giúp em với ạ:))
Vì \(a^2+b^2\ge2ab,b^2+1\ge2b\),ta có:
\(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+1}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự:\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)và \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)
Khi đó\(A\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+a}\right)\)
\(\Leftrightarrow A\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\)
Dấu"="trg BĐT trên xảy ra khi \(a=b=c=1\)
Vậy \(Max_P=\frac{1}{2}\Leftrightarrow a=b=c=1\)
Chắc không được GP đâu !!
Áp dụng bđt cauchy , ta có :
+) \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2\)
+) \(b^2+2c^2+3\ge2bc+2c+2\)
+) \(c^2+2a^2+3\ge2ac+2a+2\)
Khi đó , ta có :
\(VT\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ac+2a+2}\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{bc+c+1}+\frac{abc}{ac+a+1}\right)\)( vì abc= 1 )
\(=\frac{1}{2}=VP\)( đoạn này ban tự phân tích ra nha , mk lmaf hơi tắt )
Vậy .................
Các bn vô link này giúp nốt mk nhé, btvn ý mà:)) https://olm.vn/hoi-dap/detail/261956633251.html?auto=1
a/ \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)
b/ tìm x, y biết \(\frac{x}{y}=\frac{3}{5}\)và x + y = 18
m.n giúp với ạ, hôm thứ 7 tuần này em thi rồi !
\(a,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(b,\frac{x}{y}=\frac{3}{5}\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{5}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\)
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{18}{8}=\frac{9}{4}\)
\(\Rightarrow\frac{x}{3}=\frac{9}{4}\Rightarrow x=\frac{27}{4}\)
\(\frac{y}{5}=\frac{9}{4}\Rightarrow y=\frac{45}{4}\)
5x( x - 3 ) - 2x +6 =0
giải giúp em câu này với ạ :,(...
\( \left(5x-2\right)\left(x-3\right)=0\)
\(\left[{}\begin{matrix}5x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=3\end{matrix}\right.\)