chứng minh : 2n + 1111...1111(n chữ số) chia hết cho 3
Chứng minh rằng: 2n+1111...1(n số 1) chia hết cho 3 với n là STN ?
Vì 111...11(n số 1) có tổng các chữ số là n
=>111...11(n số 1) đồng dư với n (mod 3)
=>2n+111...11(n số 1) đồng dư với 2n +n=3n(mod 3)
Vì 3n chia hết cho 3
=>2n +111..11(n số 1) đồng dư với 0(mod 3)
=>2n+111...11(n số 1) chia hết cho 3(với n là STN)
Vậy với mọi n là STN thì 2n+111...11(n số 1) chia hết cho 3
Xsfgvhtewwerrrrrddhhfffgfffgfgffhjjjnvcxsaseertuikmjuuyyyyttttccccdgjnjhewqpl., cxse yygbdwvi hhnni
Chứng minh số 1111....1111( 81 chữ số 1) chia hết cho 81
Giải đầy đủ nha
Đứa nào thấy khó thì đừng có mà trả lời
CMR 2n+11........1111 (n chữ số 1) chia hết cho 3 ( n là số tự nhiên)
Cho so tu nhien A thoa man ;
A=1111......1111 ( 2n chữ số 1) + 444....444 (n chữ số 4) +1 Chứng minh A là số chính phương
Ta có
\(1111...11=\frac{10^{2n}-1}{9}\)
\(44444...44=4.\frac{10^n-1}{9}=\frac{4.10^n-4}{9}\)
\(\Rightarrow A=\frac{10^{2n}-1}{9}+\frac{4.10^n-4}{9}+1\)
\(\Rightarrow A=\frac{10^{2n}-1+4.10^n-4+9}{9}=\frac{10^{2n}+4.10^n+4}{9}\)
\(\Rightarrow A=\frac{\left(10^n+2\right)^2}{3^2}=\left(\frac{10^n+2}{3}\right)^2\)
=> A là số chính phương
cho a= 8n+1111...111(n thuộc n* ; n chữ số 1). chứng minh a chia hết cho 9 ?
Chứng minh A chia hết cho 9
A= 1111.....1(n chữ số 1)-10n
để 11111....-10nchia hết cho 9 thì tổng các chữ số chia hết cho 9
=>1+1+1+1+....-10n=n-10n=9n\(⋮9\)
Chứng minh n^2+n+1 ko chia hết cho 5, ko chia hết cho 4
Mình đang cần gấp
Chứng minh 3+....+100 chia hết cho 3
Chứng minh 1112111chia hết cho 1111
Chứng minhA=11...1(2001 chữ số 1)chia hết cho 3
Chứng minhB=11...1(2000 chữ số 1)chia hết cho 11
1/Chứng minh rằng với e thuộc N , thì các số sau chia hết cho 9 :
a/10n-1
b/10n+8
2/Tìm điều kiện của n thuộc N để số 10n-1 chia hết cho 9 và 11
3/Cho A = 8n + 1111...111 (n thuộc N*)
1111.....111 có n chữ số 1
Chứng minh rằng A chia hết cho 9
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
ta có : \(^{10^n}\) = 999...9 ( có n số 9 ) vì 9999...9 chia hết cho 9
suy ra 10^n - 1 chia hết cho 9
Từ 8 chữ số 1; 2; 3; 4; 5; 6; 7; 8:
a) Lập số tự nhiên N nhỏ nhất có 8 chữ số khác nhau chia hết cho 1111;
b) Lập số tự nhiên M lớn nhất có 8 chữ số khác nhau chia hết cho 1111;
c) Lập được bao nhiêu số tự nhiên có 8 chữ số khác nhau chia hết cho 1111?
a) số nhỏ nhất có tám chữ số khác nhau 12345678 chia cho 1111 được thưong nguyên là 11112.
Quy trình: X=X+1:1111X, CALC X? 11112, ==... Đến khi X=X+1=11115 ta được kết quả so nhỏ nhất cần tìm là 12348765.
b) số lon nhất có tám chữ số khác nhau 87654321 chia cho 1111 được thưong nguyên là 78896.
Quy trình: X=X-1:1111X, CALC X? 78897, ==... Đến khi X=X+1=78894 ta được kết quả so lon nhất cần tìm là 12348765.