Chứng minh rằng:
µ = tanα - (a/g.cosα)
Giúp mình chứng minh nó với! Cảm ơn trước ^^
chứng minh rằng đẳng thức
(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)
giúp mình với nhé mình cảm ơn trước ạ!!!!!
(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c))
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)
(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c))
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)
(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c))
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)
Chứng minh rằng: x2 - x +2 không có nghiệm
Các bạn giúp mình với nhé.
Mình cảm ơn trước.
Bạn hãy tách x^2-x+2 . và đưa nó về hàng đẳng thức . từ đó đối chiếu thì ta thấy được nó vô nghiệm
\(x^2-x+2=x^2-\frac{1}{2}\cdot x\cdot2+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
vậy x2-x+2 không có nghiệm
Chứng minh rằng số A=(n+1).(3.n+2) luôn chia hết cho 2 với mọi số tự nhiên n (.là dấu nhân)
Giúp mình lẹ nha mình đang cần gấp .Mình cảm ơn trước nha
Giúp mình bài này với. Mình cần trước 9 giờ tối nay để nộp bài. Mình cảm ơn:
Chứng minh rằng tổng 4 số chính phương lẻ có thể là số chính phương.
giúp mình với
biết số tự nhiên a chia cho 5 dư 4 . Chứng minh rằng a2chia cho 5 dư 1
( ghi cả cách là cho mình với nhé ::))
cảm ơn mọi người trước nè ><
Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)
Ta có: \(a^2\) = \(\left(5k+4\right)^2\)
= 25\(k^2\) + 40k + 16
= 25\(k^2\) + 40k + 15 + 1
= 5(5\(k^2\)+ 8k +3) +1
Ta có: 5 ⋮ 5 nên 5(5\(k^2\) + 8k + 3) ⋮ 5
Vậy \(a^2\) = (5k+4)25k+42 chia cho 5 dư 1. (đpcm)
cảm ơn cậu nha
Ai giải giúp mình bài toán hình với không thì hướng ý giúp mình! Mình cảm ơn trước ạ!
Cho hình thang vuông ABCD(vuông tại A và D). Có CD = 2.AB. Vẽ HD vuông góc với AC. Gọi M là trung điểm của CH. chứng minh rằng BM vuông góc với DM
chứng minh rằng 12n+1 và 30n+2 là hai số nguyên tố cùng nhau
giúp mình nhanh với ạ cảm ơn trước ạ
TK :
Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
\(Gọi\left(12n+1,30n+2\right)=d\)
\(=>12n+1⋮d=>60n+5⋮d\)
\(30n+3⋮d=>60n+6⋮d\)
\(=>\left(60n+6\right)-\left(60n+5\right)⋮d\)
\(=>1⋮d=>d=1\)
Vậy \(12n+1,30n+2\) là 2 số nguyên tố cùng nhau.
Bài 1: Biết a+b=15 và a.b=2. Tính (a-b)^2
Bài 2: Số tự nhiên x:7 dư 6. Chứng minh rằng x^2:7 dư 1
Các bạn nhanh giúp mình với ạ! Mình cảm ơn trước
Bài 1:
\(a+b=15\)
\(\Rightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a^2+2ab+b^2=225\)
\(\Leftrightarrow a^2+4+b^2=225\)
\(\Leftrightarrow a^2+b^2=221\)
Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=221-4\)
\(217\)
Bài 2:
Vì \(x:7\)dư 6
\(\Rightarrow x\equiv-1\left(mod7\right)\)
\(\Rightarrow x^2\equiv1\left(mod7\right)\)
Vậy \(x^2:7\)dư 1
Cho A=1+3+32+33+...+330
Chứng minh rằng: A không phải là số chính phương
Giúp mình nhé. mình cảm ơn trước
ta có 3A=3*(1+3+3^2+3^3+...+3^30)
3A=3+3^2+3^3+3^4+....+3^31
lấy 3A-A=(3+3^2+3^3+3^4+....+3^31)-(1+3+3^2+3^3+3^4+...+3^30)=2A=(3^31-1) vậy A=(3^31-1):2
ta có 3^31-1=34*7+3-1=X17*33-1=Y1*27-1=C7-1=C6
ta có A=C6:2=I3
ta thấy các số có các cs tận cùng bằng 2;3;5;8 ko phải là số chính phương mà A=I3 có tận cùng là 3
vậy A không phải là số chính phương