Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cinderella
Xem chi tiết
Ahihi
Xem chi tiết

có rồi nha bạn ko cần nhắc lại đâu tks nha

FUCK
1 tháng 9 2018 lúc 17:34

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Admin (a@olm.vn)
Xem chi tiết
phạm văn tuấn
21 tháng 8 2018 lúc 8:13

cảm ơn online math mà cho em hỏi em đang học lớp bảy vậy khi em lên lớp mười có đc nhận nữa ko

mong cô trả lời 

sao các giáo viên dạo này ko trả lời cho học sinh nữa ạ

Admin (a@olm.vn)
21 tháng 8 2018 lúc 8:16

Các bạn ở tất cả các khối lớp có thể đặt câu hỏi cho thầy Đông nhé. Thầy Đông từng đạt giải Ba Toán quốc gia hồi thầy là học sinh THPT. 

Nguyễn Thị Mỹ Duyên
21 tháng 8 2018 lúc 8:21

Thưa Admin, em chưa làm gì hết mà sao Admin lại trừ điểm của em

Lại không cho em đăng câu hỏi khi em cần thiết

Mong Admin xem xét lại ạ

HISINOMA KINIMADO
Xem chi tiết
✪SKTT1 NTD✪
29 tháng 9 2018 lúc 22:22

a , Điểm O nằm giữa một điểm bất kì khác O của tia Ox và một điểm bất kì khác O của tia Oy.

Vẽ hình:

O B A x y

b , không còn cách nào khác kết quả trên 

Tiểu thư Thái Quỳnh Phươ...
Xem chi tiết
Le Nhat Phuong
8 tháng 6 2017 lúc 12:38

Các số nguyên tố từ 2 đến 100 

2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 2

Tính chất của số nguyên tố

Kí hiệu là ''b / a'' nghĩa là b là ước của a, kí hiệu a \(⋮\) b nghĩa là a chia hết cho b

1. Ước tự nhiên khác 1 nhỏ nhất của 1 số tự nhiên là nguyên tố

Chứng minh; Giả sử d / a nhỏ nhất; d \(\ne\) 1.

Nếu d không nguyên tố \(\Rightarrow\) d \(=\) d1. d2 ; d1, d2 lớn hơn 1 

\(\Rightarrow\) d1 / a với d1 lớn hơn d ; mâu thuẫn với d nhỏ nhất. Vậy d là nguyên tố 

2. Cho p là nguyên số; a \(\in\) N; a \(\ne\) 0. Khi đó 

a,b \(=\) p \(\Leftrightarrow\) a \(⋮\) p 

a,b \(=\) 1\(=\) a p

3. Nếu tích của nhiều số chia hết cho một số nguyên tố p thì có ít nhất một thừa số chia hết cho p 

    \(II\) ai \(⋮\) \(\Rightarrow\) \(\exists\)ai \(⋮\)p

4. Ước số dương bé nhất khác 1 của số nguyên tố không vượt qua \(\sqrt{a}\) 

5. 2 số nguyên tố nhỏ nhất và cũng là số nguyên tố chẵn duy nhất 

6. Tập hợp các số nguyên là vô hạn. Tương đương với viếc ko có nguyên số lớn nhất

    Chứng minh; Giả sử có hữu hạn số nguyên tố; p1  bé hơn p2 bé hơn .... pn

Nhật xét a \(=\) p1. p2 .... pn + 1 

Ta có; a lớn hơn 1 và a 1 pi; ''i\(=\) a là hợp số, a có nguyên tố pi, hay aMpi và pi M pi. 1M pi ; Mâu thuẫn 

Vậy tập hợp các số nguyên tố là vô hạn 

Chúc bạn học giỏi

Tiểu thư Thái Quỳnh Phươ...
8 tháng 6 2017 lúc 10:47

Giải thích giùm mik nha mấy bạn!

online
8 tháng 6 2017 lúc 10:48

 Chúng ta đều biết, "Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó".

       Tức là: một số tự nhiên lớn hơn 1, nếu như ngoài bản thân nó và 1 ra, nó không chia hết cho số nào khác nữa thì nó là số nguyên tố. Ví dụ như 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...

       Vậy làm sao chúng ta có thể tìm ra được các số nguyên tố trong số các số  tự nhiên ? Trong tập hợp các số tự nhiên, có bao nhiêu số nguyên tố? Cho đến nay, người ta vẫn chưa biết được, bởi vì quy luật của nó rất khó tìm, giống như là một đứa trẻ bướng bỉnh vậy, nó nấp phía đông, chạy phía tây, trêu tức các nhà toán học.

       Có lẽ bạn cũng đã từng nghe đến phương pháp sàng lọc của nhà toán học Eratosthenes, dùng phương pháp này có thể tìm ra các số nguyên tố rất tiện lợi. Nó giống như là sàng lấy sỏi trong cát, sàng lọc lấy những số nguyên tố trong tập hợp số tự nhiên, bảng các số nguyên tố chính là được làm theo phương pháp này.

       * Năm 1742, nhà Toán học Đức Gônbach viết thư cho nhà Toán học Thụy Sĩ Ơle nói rằng: "Mọi số tự nhiên lớn hơn 5 đều viết được dưới dạng tổng của ba số nguyên tố".

       Bạn có thể viết các số 6, 7, 8, 9, 10, ... dưới dạng tổng của ba số nguyên tố?

       * Trong thư trả lời Gônbach, Ơle nói rằng: "Mọi số chẵn lớn hơn 2 đều viết được dưới dạng tổng của hai số nguyên tố".

       Bạn có thể viết các số: 30, 32 ... dưới dạng tổng của ba số nguyên tố?

tthnew
Xem chi tiết
Trần Minh Hoàng
19 tháng 3 2021 lúc 22:59

tth giờ chuyển sang hình rồi à :))

Câu 2:

Kẻ đường cao AG, BE, CF của tam giác ABC.

Dễ thấy tứ giác HKMG, HECG nội tiếp.

Do đó AK . AM = AH . AG = AE . AC. Suy ra tứ giác KECM nội tiếp.

Tương tự tứ giác KFCM nội tiếp.

Do đó \(\widehat{BKC}=\widehat{BKM}+\widehat{CKM}=\widehat{BFM}+\widehat{CEM}=\widehat{ABC}+\widehat{ACB}=\widehat{BHC}\). Suy ra tứ giác BHKC nội tiếp.

Ta có \(\widehat{BLC}=\widehat{BKC}=\widehat{BHC}=180^o-\widehat{BAC}\) nên tứ giác ABLC nội tiếp.

b) Ta có tứ giác KECM nội tiếp nên \(\widehat{MKC}=\widehat{MEC}=\widehat{ACB}\). Do đó \(\Delta MKC\sim\Delta MCA\left(g.g\right)\).

Suy ra \(\widehat{KCM}=\widehat{KAC}\Rightarrow\widehat{LAB}=\widehat{LCB}=\widehat{KCB}=\widehat{KAC}\).

c) Ta có kq quen thuộc là \(\Delta LMB\sim\Delta LCA\).

Kẻ tiếp tuyến Lx của (ABC) sao cho Lx nằm cùng phía với B qua AL.

Ta có \(\widehat{ALx}=\widehat{ACL}=\widehat{LMX}\Rightarrow\) Ax là tiếp tuyến của (LXM).

Do đó (ABC) và (LXM) tiếp xúc với nhau.

Ta có AI . AX = AH . AG = AK . AM nên I, X, M, K đồng viên.

Ta có kq quen thuộc là (HBC) và (ABC) đối xứng với nhau qua BC.

Lại có (IKMX) và (LMX) đối xứng với nhau qua BC.

Suy ra (HC) và (IKMX) cũng tiếp xúc với nhau.

Nguyễn Trọng Chiến
19 tháng 3 2021 lúc 17:25

Câu 1 :

a Ta có \(\Lambda CHE\),  \(\Lambda HDB\) là các góc chắn nửa đường tròn đường kính HC;HB \(\Rightarrow\Lambda CHE=\Lambda HDB=90^0\)  Mà \(\Lambda CHE+\Lambda AEH=180^0\Rightarrow\Lambda HDB+\Lambda AEH=180^0\Rightarrow\) Tứ giác ADHE nội tiếp

b Từ câu a ta có:  tứ giác ADHE nt \(\Rightarrow\Lambda IEH=\Lambda DEH=\Lambda DAH=\Lambda BAH\) Mà \(\Lambda BAH=\Lambda BHD=\Lambda IHD\)( cùng phụ với góc ABH) 

\(\Rightarrow\Lambda IEH=\Lambda IHD\) Lại có \(\Lambda EIH=\Lambda HID\) \(\Rightarrow\Delta IEH\sim\Delta IHD\left(g.g\right)\Rightarrow\dfrac{IH}{ID}=\dfrac{IE}{IH}\Rightarrow IH^2=ID\cdot IE\)

c Gọi giao điểm của BM với AC là K; CN với AB là J

Từ câu a ta có tứ giác ADHE nt \(\Rightarrow\Lambda KAH=\Lambda EAH=\Lambda DEH=\dfrac{1}{2}sđMH\) Mà \(\Lambda MHA=\dfrac{1}{2}sđMH\Rightarrow\Lambda KAH=\Lambda MHA\) Lại có \(\Lambda ABK=\Lambda DMH\left(=\dfrac{1}{2}sđDM\right)\) ; \(\Lambda BAH=\Lambda BHD\) (từ câu b)

\(\Rightarrow\Lambda BAH+\Lambda KAH+\Lambda BAK=\Lambda MHA+\Lambda DMH+\Lambda BHD=\Lambda AHB=90^0\Rightarrow\Lambda BKA=90^0\) \(\Rightarrow\) BK vuông góc với CA tại K\(\Rightarrow BM\) vuông góc với AC tại K(1)

Chứng minh tương tự ta được: CN vuông góc với AB tại J(2)

Xét tam giác ABC có BK vuông góc với CA; CJ vuông góc với AB ; AH vuông góc với BC \(\Rightarrow\) BK;CJ;AH là 3 đường cao của tam giác ABC 

\(\Rightarrow BK;CJ;AH\) đồng quy \(\Rightarrow BM;CN;AH\) đồng quy

Trần Minh Hoàng
20 tháng 3 2021 lúc 22:07

Câu 3:

a) Dễ thấy E thuộc AB, F thuộc AC.

Ta có \(\dfrac{BE}{AB}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{CF}{AC}\Rightarrow EF\) // \(BC\).

b) Do các tứ giác AEMP và AFNP nội tiếp nên \(\widehat{MPN}=\widehat{MPA}+\widehat{NPA}=\widehat{MEB}+\widehat{NFC}=\widehat{MDB}+\widehat{NEC}=180^o-\widehat{MDN}=180^o-\widehat{MJN}\Rightarrow\) Tứ giác MPNJ nội tiếp.

c) Ta có \(\widehat{JPM}=\widehat{JNM}=\widehat{JEM}=\widehat{BEM}=\widehat{MPA}\Rightarrow\) A, P, J thẳng hàng.

undefined

Akaino
Xem chi tiết
Lihnn_xj
Xem chi tiết
heliooo
9 tháng 2 2022 lúc 7:29

chúc mừng :))

Phạm Ngọc Khánh Ngân
9 tháng 2 2022 lúc 7:29

Chúc mừng mọi người!!!!!!!!!!!!!!!!!!!!!!

꧁༺Lê Thanh Huyền༻꧂
9 tháng 2 2022 lúc 7:30

dạ em cảm ơn cj nhiều lắm ạ 

năm mới , mới chỉ có cj lì xì coin cho em ,chứ còn lại toàn nhận lì xì gp của a pop pop

Nguyễn Quang Thành
Xem chi tiết
Kaneki Ken
13 tháng 8 2015 lúc 20:50

hỏi vớ vớ vẩn vẩn ko bít nói nhìu