Cho hình thang ABCD có đáy lớn CD, đáy nhỏ AB. Gọi E là trung điểm của AC, F là trung điểm của BD. Vẽ EM ┴BC tại M, FN ┴AD tại N. Gọi giao của EM và FN là I. CMR: IC = ID
Cho hình thang ABCD đáy nhỏ AB đáy lớn CD Gọi E là trung điểm của AC F là trung điểm của BD Vẽ EM vuông góc với BC( M thuộc BC ) FN vuông góc với AB (N thuộc AD ) EM giao FN ở I CMR IC=ID
cho hình thang abcd có đáy lớn cd đáy nhỏ ab e là trung điểm ac f là trung điểm bd vẽ em vuông bc m thuộc bc fn vuông ad f thuộc ad
em và fn cắt tại i cmr ic=id
Cho hình thang ABCD đáy lớn CD .Gọi E là trung điểm AC ,F là trung điểm BD , K là trung điểm CD. Vẽ EM vuông góc với BC ,FN vuông góc AD, EM cắt FN tại I. Chứng minh EF//CD . Chứng minh IF vuông góc KE. Chứng minh IE vuông góc KF.Chứng minh IC = ID
dài lắm
Đặt AB = m, MC = MD = n.
a) Do AB // CD, ta có : (1) (2)Từ (1) và (2) suy ra = . Từ đó theo định lí đảo của định lí Ta - lét đối với tam giác MAB, ta có IK // AB....Cho hình thang ABCD có hai đáy AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF song song với AB.
b) Đường thẳng EF cắt AD, BC lần lượt tại H và N. Chứng minh: HE = EF = FN.
CHo hình thang ABCD : có 2 đáy là AB và CD. M là trung điểm CD, E là giao điểm của MA và BD, F là giao điểm của MB và Ac.
a) CM : EF // AB
b) EF cắt AD và BC lần lượt tại H và N . CM : HE=EF=FN.
a, MC // AB => MC/AB = MF/FB (hệ quả)
MB // AB => BM/AB = ME/EA (hệ quả)
Có BM = CM do M là trung điểm của BC (gt)
=> MF/FB = ME/EA
=> EF // AB
b, có HF // BM => AE/EM = HE/BM (hệ quả)
EF // MC => AE/EM = EF/MC (hệ quả)
BM = MC (Câu a)
=> HE = EF (1)
có EF // BM => EF/BM = BF/FM (hệ quả)
FN // MC => FN/MC = FB/FM (hệ quả)
BM = CM (Câu a)
=> EF = FN và (1)
=> HE = EF = FN
Cho hình thang ABCD có AB//CD (AB<CD), M là trung điểm AD. Qua M vẽ đường thẳng // với 2 đáy của hình thang cắt 2 đường chéo BD và AC lần lượt tại E,F.
a) Chứng minh N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trưng điểm AB, đường thẳng vuông góc với IE cắt với nhau tại E và đường thẳng vuông góc với IF tại F cắt nhau tại K. Chứng minh KC=KD
Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AB
b) Đường thẳng EF cắt AD và BC lần lượt tại M và N. Chứng minh ME=EF=FN
c) Biết AB=7,5cm; CD=12cm. tính MN
có m là trđ của cd rồi lại còn ef cắt bc tại m
a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)
xét tam giác MFC có MC // AB (gt) => MF/FB = CM/AB (đl)
có DM = CM do M là trung điểm của CD (gt)
=> ME/AE = MF/FB xét tam giác ABM
=> EF // AB (đl)
b, gọi EF cắt AD;BC lần lượt tại P và Q
xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)
xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)
xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)
=> PE/AB = EF/AB
=> PE = EF
tương tự cm được FQ = EF
=> PE = EF = FQ
c, Xét tam giác DAB có PE // AB => PE/AB = DP/DA (đl)
xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl)
=> PE/AB + PE/DM = DP/AD + AP/AD
=> PE(1/AB + 1/DM) = 1 (1)
xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)
xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)
=> EF/AB + EF/DM = MF/MB + BF/BM
=> EF(1/AB + 1/DM) = 1 (2)
xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)
xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)
=> FQ/AB + FQ/MC = CQ/BC + BQ/BC
có MC = DM (câu a)
=> FQ(1/AB + 1/DM) = 1 (3)
(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3
=> PQ(1/AB + 1/DM) = 3
DM = 1/2 CD = 6
đến đây thay vào là ok
Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AB
b) Đường thẳng EF cắt AD và BC lần lượt tại M và N. Chứng minh ME=EF=FN
c) Biết AB=7,5cm; CD=12cm. tính MN
Cho hình thang ABCD có AB song song CD ( AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E,F.
a)Chứng minh rằng N,E,F lần lượt là trung điểm của BC,BD,AC.
b)Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K.Chứng minh KC=KD