Những câu hỏi liên quan
Lân Huỳnh Bảo
Xem chi tiết
lý canh hy
Xem chi tiết
Thắng Nguyễn
6 tháng 1 2020 lúc 18:27

\(P=\text{∑}\frac{a\left(\frac{1}{a}+1+c\right)}{\left(a^3+b^2+c\right)\left(\frac{1}{a}+1+c\right)}\le\frac{\text{∑}\left(1+a+ac\right)}{\left(a+b+c\right)^2}\)

\(\le\frac{3+a+b+c+\frac{\left(a+b+c\right)^2}{3}}{\left(a+b+c\right)^2}\)

\(\le\frac{3+3+\frac{3^2}{3}}{3^2}=1\)

"=" khi a=b=c=1

Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
25 tháng 10 2020 lúc 15:46

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

Khách vãng lai đã xóa
Kiệt Nguyễn
26 tháng 10 2020 lúc 11:44

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

Khách vãng lai đã xóa
Hà Gia Khang
25 tháng 4 2023 lúc 9:30

3. Áp dụng cô si ta có 

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c=1\)

Lại có:

 \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

⇒ P ≥ \(2020.1+1=2021\)

Vậy Pmin = 2021 khi và chỉ khi a = b = c =1/3

Nguyen Phuc Duy
Xem chi tiết
Kiệt Nguyễn
20 tháng 2 2021 lúc 10:51

Áp dụng bổ đề quen thuộc \(x^3+y^3\ge xy\left(x+y\right)\), ta được: \(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3\right)+\left(a^3+c^3\right)+2}\le\frac{1}{ab\left(a+b\right)+ac\left(a+c\right)+2}\)\(=\frac{bc}{ab^2c\left(a+b\right)+abc^2\left(a+c\right)+2bc}=\frac{bc}{b\left(a+b\right)+c\left(a+c\right)+2bc}\)\(\le\frac{bc}{ab+ac+4bc}=\frac{bc}{b\left(a+c\right)+c\left(a+b\right)+2bc}\)\(\le\frac{1}{9}\left(\frac{bc}{b\left(a+c\right)}+\frac{bc}{c\left(a+b\right)}+\frac{bc}{2bc}\right)=\frac{1}{9}\left(\frac{c}{a+c}+\frac{b}{a+b}+\frac{1}{2}\right)\)(1)

Tương tự, ta có: \(\frac{1}{a^3+2b^3+c^3+2}\le\frac{1}{9}\left(\frac{c}{b+c}+\frac{a}{a+b}+\frac{1}{2}\right)\)(2); \(\frac{1}{a^3+b^3+2c^3+2}\le\frac{1}{9}\left(\frac{b}{b+c}+\frac{a}{a+c}+\frac{1}{2}\right)\)(3)

Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(P\le\frac{1}{9}\left(1+1+1+\frac{3}{2}\right)=\frac{1}{2}\)

Vậy giá trị lớn nhất của P là \(\frac{1}{2}\)đạt được khi x = y = z = 1

Khách vãng lai đã xóa
toán khó mới hay
Xem chi tiết
alibaba nguyễn
11 tháng 11 2017 lúc 8:25

Ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tụ ta có:

\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(=3+3-\frac{ab+bc+ca+3}{2}\)

\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)

pham trung thanh
Xem chi tiết
Đinh Đức Hùng
21 tháng 5 2018 lúc 21:39

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có : 

\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)

\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)

\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)

Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)

PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))

Jonh Capricorn
28 tháng 5 2018 lúc 9:28

nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm

Lê Thị Hải Anh
Xem chi tiết
alibaba nguyễn
12 tháng 11 2018 lúc 14:27

Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)

Dễ thấy \(P-S=0\)

\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)

Ta chứng minh: 

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)

\(\Rightarrow P\ge1\)

phulonsua
5 tháng 9 2021 lúc 18:08

P-S=0 ?? =))

Khách vãng lai đã xóa
lý canh hy
Xem chi tiết
Nyatmax
25 tháng 12 2019 lúc 20:48

We have:

\(M=1-\frac{1}{3}\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\)

Consider:

\(\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\ge\frac{3}{2}\)

\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\)

Prove:

\(\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\ge\frac{3}{2}\)

\(\Leftrightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge2\left(a^2+b^2+c^2\right)+27\)

Consider:

\(\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+\Sigma_{cyc}ab\)

\(\Rightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab\)

Now we need to prove:

\(4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab=2\Sigma_{cyc}a^2+27\)

\(\Leftrightarrow2\left(a+b+c\right)^2=27\) (not fail)

\(\Rightarrow M\le\frac{1}{2}\)

Sign '=' happen when \(a=b=c=\sqrt{\frac{3}{2}}\)

Khách vãng lai đã xóa
Nguyễn Hồng Hương
Xem chi tiết