Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shooting star game
Xem chi tiết
shooting star game
Xem chi tiết
Kim Tae Huyng
Xem chi tiết

Trừ mỗi vế cho 1, ta có:

\(\frac{b-16a+16c}{4a}=\frac{c-16b+16a}{4b}=\frac{a-16c+16b}{4c}=\frac{a+b+c}{4.\left(a+b+c\right)}=\frac{1}{4}\)(vì a,b,c > 0 nên a+b+c>0)

\(\Leftrightarrow\hept{\begin{cases}b+16c=17a\\c+16a=17b\\a+16b=17c\end{cases}}\Leftrightarrow a=b=c\)

tự thay vào

Trần Quốc Tuấn hi
Xem chi tiết
Diệu Huyền
25 tháng 11 2019 lúc 10:18

Áp dụng tính chất của tỉ lệ thức ta được:

\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\) \(\Rightarrow\frac{a+b+c}{2}=\frac{a+b-7+b+c+3+a+c+4}{4\left(a+b+c\right)}=\frac{2\left(a+b+c\right)}{4\left(a+b+c\right)}=\frac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=1\\a+b-7=2c\\b+c+3=2a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=\frac{5}{3}\\c=-2\end{matrix}\right.\) Thay vào ta được: \(20.\frac{4}{3}+11.\frac{5}{3}+2017.\left(-2\right)=-3989\) Vậy.......................
Khách vãng lai đã xóa
nguyen phuong thao
Xem chi tiết
Nguyễn Linh Chi
23 tháng 11 2019 lúc 9:54

\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}.\)

TH1: \(a+b+c=0\)

=> \(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)

=> a + b - 7 + b + c + 3 - a - c - 4 =0 

=> 2b -8 =0

=>  2b = 4 

=> b = 2.

=> a = 5; c = - 5

=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017 ( -5) = -9963.

TH2: a + b + c khác 0.

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\)

\(=\frac{a+b-7+b+c+3+a+c+4}{4c+4a+4b}=\frac{2a+2b+2c}{4a+4b+4c}=\frac{1}{2}\)(1)

=> \(\hept{\begin{cases}a+b-7=2c\\b+c+3=2a\\a+c+4=2b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c+7\left(1\right)\\b+c=2a-3\left(2\right)\\a+c=2b-4\left(3\right)\end{cases}}\)

Từ (1) => \(a+b+c=1\left(4\right)\)

Từ (1); (4) => 2c + 7 + c = 1 => 3c = -6 => c = -2

Từ (2); (4) => 2a - 3 + a = 1 => 3a = 4  => a = 4/3

Từ (3); (4) => 2b - 4 + b = 1 => 3b = 5 => b = 5/3

=>  A = 20a + 11b + 2017c = \(20.\frac{4}{3}+11.\frac{5}{3}+2017.\left(-2\right)=-3989\)

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
25 tháng 7 2020 lúc 22:03

ta có \(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}=\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\cdot b+\frac{11-\left(\frac{b}{c}\right)^3}{\frac{b}{c}+4}\cdot c+\frac{11-\left(\frac{c}{a}\right)^3}{\frac{c}{a}+4}\cdot a\)

khi a=b=c=1 ta thấy đẳng thức xảy ra

xét \(f\left(x\right)=\frac{11-x^3}{x+4}\)ta có \(\frac{11-x^3}{x+4}\le-x+3\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\ge0\forall x>0\)

thay x bởi a/b ta được \(\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\le-\frac{a}{b}+3\Leftrightarrow\frac{11b^3-a^3}{ab+4b^2}\le-a+3b\)

tương tự \(\hept{\begin{cases}\frac{11c^3-b^3}{bc+4c^2}\le-b+3c\\\frac{11ba^3-c^3}{ac+4a^2}\le-c+3a\end{cases}}\)

cộng các bđt cùng chiều ta được

\(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ac+4a^2}\le2\left(a+b+c\right)=6\)

Khách vãng lai đã xóa
Phùng Minh Quân
25 tháng 7 2020 lúc 13:40

\(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\)

Khách vãng lai đã xóa
phan hải thuận
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
17 tháng 12 2020 lúc 19:54

\(\frac{a+b+c}{2}\) =\(\frac{a+b-7}{4c}\)=\(\frac{b+c+3}{4a}\)=\(\frac{a+c+4}{4b}\)

Xảy ra 2 trường hợp, mình làm trường hợp 1 thôi.

TH1 : \(a+b+c=0\)

=>\(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)

=> a + b - 7 + b + c + 3 - a - c - 4 = 0

=> 2b - 8 = 0

=> 2b = 4

=> b = 2

=> a = 5 , c = -5

=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017.(-5) = - 9963

Khách vãng lai đã xóa
Nguyễn Bạch Trường Giang
Xem chi tiết
Lê Huỳnh Minh Ánh
9 tháng 7 2016 lúc 12:28

khó quá ak

Nguyễn Bạch Trường Giang
9 tháng 7 2016 lúc 13:00

ừ, bạn bik làm thì giúp mình nha ^^

Law Trafargal
Xem chi tiết
Nguyễn Linh Chi
23 tháng 11 2019 lúc 9:56

Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa