Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
zZz Cool Kid_new zZz
Xem chi tiết
tth_new
30 tháng 12 2019 lúc 9:51

Kĩ thuật gì đâu-_-

\(A=\Sigma_{cyc}\frac{a^2}{b^2+1}=\Sigma_{cyc}a^2\left(1-\frac{b^2}{b^2+1}\right)\)

\(\ge\Sigma_{cyc}a^2\left(1-\frac{b}{2}\right)=\Sigma_{cyc}a^2-\Sigma_{cyc}\frac{a^2b}{2}\)

\(=\frac{\left(a^2+b^2+c^2\right)+\left[\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\right]}{2}\)

\(=\frac{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2+b^2+c^2\right)}{3}}{2}\)

\(=\frac{a^2+b^2+c^2+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2}{2}\)

\(\ge\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c 

Khách vãng lai đã xóa
tth_new
30 tháng 12 2019 lúc 9:52

Lộn: a = b = c = 1 nha:v

Khách vãng lai đã xóa
tth_new
30 tháng 12 2019 lúc 9:53

Lộn nữa -_-

\(=\frac{\left(a^2+b^2+c^2\right)+\frac{a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2}{3}}{2}\)

Rồi còn lại y chang

Khách vãng lai đã xóa
Đấng Valhein
Xem chi tiết
BÙI VĂN LỰC
Xem chi tiết
Thanh Tùng DZ
3 tháng 1 2020 lúc 16:41

P = 4a + 7b + 10c + \(\frac{4}{a}+\frac{1}{4b}+\frac{1}{9c}\)

P = \(3\left(a+2b+3c\right)+\left(a+\frac{4}{a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{9c}\right)\)

\(\ge3.4+2\sqrt{a.\frac{4}{a}}+2\sqrt{b.\frac{1}{4b}}+2\sqrt{c.\frac{1}{9c}}=\frac{53}{3}\)

Vây GTNN của P là \(\frac{53}{3}\)khi  \(a=1;b=\frac{1}{2};c=\frac{1}{3}\)

Khách vãng lai đã xóa
BÙI VĂN LỰC
3 tháng 1 2020 lúc 22:09

n=2 mới đúng

Khách vãng lai đã xóa
BÙI VĂN LỰC
3 tháng 1 2020 lúc 22:11

quên a=2 mới đúng, vì bđt côsi đ/k là a=b

Khách vãng lai đã xóa
Nguyễn Tiến Dũng
Xem chi tiết
Nguyễn Hương Giang
16 tháng 12 2016 lúc 21:04

Ta có :

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)

\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0

=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25

Tùng Nguyễn
Xem chi tiết
Thanh Tùng Nguyễn
Xem chi tiết
Trần Thanh Phương
25 tháng 8 2019 lúc 14:57

Lời giải :

Đặt \(\hept{\begin{cases}a+2b+c=x\\a+b+2c=y\\a+b+3c=z\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-x+5y-3z\\b=x-2y+z\\c=z-y\end{cases}}\)

Thay vào P ta được :

\(P=\frac{-x+5y-3z+3z-3y}{x}+\frac{4x-8y+4z}{y}+\frac{-8z+8y}{z}\)

\(P=-1+\frac{2y}{x}+\frac{4x}{y}-8+\frac{4z}{y}-8+\frac{8y}{z}\)

\(P=-17+\left(\frac{2y}{x}+\frac{4x}{y}\right)+\left(\frac{4z}{y}+\frac{8y}{z}\right)\)

Áp dụng BĐT Cô-si :

\(P\ge-17+2\sqrt{\frac{2y\cdot4x}{x\cdot y}}+2\sqrt{\frac{4z\cdot8y}{x\cdot z}}\)

\(=-17+2\sqrt{8}+2\sqrt{32}\)

\(=-17+12\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{2y}{x}=\frac{4x}{y}\\\frac{4z}{y}=\frac{8y}{z}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x^2=y^2\\z^2=2y^2\end{cases}}\)

Thay a,b,c vào tìm ra dấu "=" nhé. Khá dài và phức tạp đấy.

Trần Thanh Phương
25 tháng 8 2019 lúc 15:14

Ai ti-ck sai ra đây nói chuyện nào ?

NGUYỄN HOÀNG MINH  DŨNG
30 tháng 6 2020 lúc 20:38

em ti-ck đúng cho anh rùi nhé!! (^.^)

Khách vãng lai đã xóa
QUan
Xem chi tiết
Hoàng Đức Khải
Xem chi tiết
Kurosaki Akatsu
Xem chi tiết
HeroZombie
13 tháng 8 2017 lúc 21:27

có rất nhiều cách ngắn bn ạ, quan trọng mình làm bn hiểu ko thôi, cho biết lớp của bn để mk xài cách ngắn nhất mà hiệu quả nhất

Đinh Đức Hùng
13 tháng 8 2017 lúc 21:29

Ko mất tính tổng quát !! giả sử \(a\ge b\ge c\ge d\)

Từ đó suy ra

\(2a\ge b+c\Leftrightarrow2\ge\frac{b+c}{a}\Leftrightarrow\frac{1}{2}\le\frac{a}{b+c}\left(1\right)\)

CM tương tự ta cx có : \(\hept{\begin{cases}\frac{b}{c+d}\ge\frac{1}{2}\left(2\right)\\\frac{c}{d+a}\ge\frac{1}{2}\left(3\right)\\\frac{d}{a+b}\ge\frac{1}{2}\left(4\right)\end{cases}}\)

Cộng \(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\)lại ta đc đpcm

Từ đó xét tiếp các trường hợp \(a\ge c\ge b\ge d;c\ge a\ge b\ge d....\) ta cx đc đpcm