chứng tỏ :
a)2 số lẻ liên tiếp là 2 SNT cùng nhau
b)4n+5 và 6n+7 là 2 SNT cùng nhau
giúp mình với
thanks
1) CMR:2 số 2n+1 và 6n+5 là 2 SNT cùng nhau mọi n€N
2)chứng tỏ:2STN lẻ liên tiếp bất kì nguyên tố cùng nhau
1)Gọi ƯCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d; 6n+5 chia hết cho d
=>3(2n+1) chia hết cho d; 6n+5 chia hết cho d
=>6n+3 chia hết cho d; 6n+5 chia hết cho d
mà 3;5 là 2 số nguyên tố cùng nhau
nên 6n+3 và 6n+5 là 2 số nguyên tố cùng nhau
hay 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
=>đpcm
CMR : a)2 số lẻ liên tiếp là 2 SNT cùng nhau
b) 2n +1 và 3n+1 là 2 SNT cùng nhau
CMR các số sau là 2 SNT cùng nhau
a)2 số lẻ liên tiếp
b)2n+5 và 3n+7;(n thuộc N)
Gọi ƯCLN(a; b) là d. Theo đề bài, ta có:
n chia hết cho d => 2n chia hết cho d
2n+5 chia hết cho d
=> 2n+5-2n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(a; b) = 1
=> a và b nguyên tố cùng nhau (đpcm)
tick nhé bạn
CMR các số sau là 2 SNT cùng nhau
a)2 số lẻ liên tiếp
b)2n+5 và 3n+7;n thuộc N
a) Đặt 2 số đấy là 2k+1 và 2k+3 và UWCLN của chúng là d . Ta có :
2k+1 chia hết cho d ; 2k+3 chia hết cho d => 2k+3 -(2k+1) chia hết cho d hay 2 chia hết cho d
d ko thể bằng 2 vì d là ước của 2 số lẻ => d=1 => 2 số lẻ liên tiếp nguyên tố cùng nhau .
b) Gọi ƯCLN của 2n+5 và 3n+7n là d . Ta có
2n+5 chia hết cho d => 6n+10 chia hết cho d
3n+7 chia hết cho d => 6n+ 14 chia hết cho d
=> 6n+14 -(6n+10) chia hết cho d hay 4 chia hết cho d mà d ko thể bằng 2 hay 4 vì d là ước của 2n+5 ( số lẻ ) => d=1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau .
chứng minh 2n+3 và 4n+5 là 2 SNT cùng nahu
Chứng minh rằng các số sau là các SNT cùng nhau
a) n+5 , n+6
b) 2n+3 và n+2
c) 16n+5 ,24n+7
d) 2n + 3 , 4n+8
Gọi d = ƯCLN(n + 5; n + 6) (d \(\in\) N*)
\(\Rightarrow\begin{cases}n+5⋮d\\n+6⋮d\end{cases}\)\(\Rightarrow\left(n+6\right)-\left(n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\in\) N* => d = 1
=> ƯCLN(n + 5; n + 6) = 1
=> n + 5 và n + 6 là 2 số nguyên tố cùng nhau (đpcm)
c) Gọi d = ƯCLN(16n + 5; 24n + 7) (d \(\in\) N*)
\(\Rightarrow\begin{cases}16n+5⋮d\\24n+7⋮d\end{cases}\)\(\Rightarrow\begin{cases}3.\left(16n+5\right)⋮d\\2.\left(24n+7\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}48n+15⋮d\\48n+14⋮d\end{cases}\)
\(\Rightarrow\left(48n+15\right)-\left(48n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà d \(\in\) N* => d = 1
=> ƯCLN(16n + 5; 24n + 7) = 1
=> 16n + 5 và 24n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Cho a;b là 2 SNT cùng nhau. Chứng minh :
a và a+b là 2 SNT cùng nhau
2 SNT gọi là sinh đôi nếu trúng là 2 SNT lẻ liên tiếp .
CMR : 1 STN nằm giữa 2 SNT sinh đôi thì \(⋮\)6 ( SNT lớn hơn 3 )
CMR
a, Mỗi snt > 2 đều có dạng 4n - 1 hoặc 4n +1
b, mọi snt >3 đều có dạng 6n-1 hoăc 6n+1
c, cmr nếu p và 10p+1 đều là 2 snt trong đó p > 3 thì 5p +1 chia hết cho 6